自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Henry的博客

佛系学习,正常摆烂

  • 博客(511)
  • 收藏
  • 关注

原创 改进系列(14):基于Swin Transformer的SAM交互式图像分割方法研究:腹部13器官分割

本文提出了一种基于Swin Transformer架构的交互式图像分割方法,通过引入点提示机制实现用户引导的精确分割。该方法采用编码器-解码器结构,在编码阶段利用Swin Transformer的层次化特征提取能力,在解码阶段结合跳跃连接恢复空间细节。实验结果表明,该方法在标准数据集上取得了较高的分割精度,同时支持用户通过点击交互优化分割结果。本文详细介绍了网络架构设计、训练策略以及交互式推理系统的实现。关键词:交互式图像分割;深度学习;点提示;医学图像分析。

2025-06-19 16:54:34 1024 2

原创 改进系列(1):TransUnet结合SAM box改进对MICCAI FLARE腹部13器官图像分割

本章尝试将TransUnet和SAM结合,以期望达到更换的模型TransUnet作为医学图像分割的基准,在许多数据集上均取得了很好的效果,然而最近SAM大模型的兴起,图像分割似乎有了新的方向关于图像分割项目、sam模型复现参考本人其他专栏,这里之作简单介绍TransUnet是一个专门为医学图像分割任务设计的深度学习模型。它是一种卷积神经网络(CNN),采用基于变压器的架构。TransUnet在具有相应分割掩模的大型医学图像数据集上进行训练,以学习如何从输入图像中准确分割器官、病变或其他结构。

2024-10-12 16:12:44 1628

原创 Unet 实战分割项目、多尺度训练、多类别分割

之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间。

2024-02-05 21:38:35 8091 21

原创 UNet 改进:添加EfficientViMBlock

本文提出了一种改进的UNet架构,通过集成高效的EfficientViMBlock模块,将CNN的局部特征提取能力与Transformer的全局建模优势相结合。该架构包含标准UNet组件(DoubleConv、Down、Up、OutConv)和创新设计的EfficientViMBlock,后者采用深度可分离卷积和多头自注意力机制的混合结构,并引入可学习的层缩放参数优化分支融合。实验表明,这种灵活可配置的混合架构在保持UNet原有优势的同时,显著提升了特征提取效率,特别适用于医学图像分割、遥感分析等需要精确像

2025-08-10 06:24:29 172

原创 分类算法:支持向量机

支持向量机(SVM)是一种强大的机器学习分类算法,它通过寻找最优决策边界来实现分类,具有出色的泛化能力。SVM的核心思想是最大化间隔,确保决策边界远离两侧数据点,提高模型鲁棒性。它特别适合小样本、高维数据分类,如文本分类和生物医学数据分析。虽然计算成本较高,但SVM在处理非线性问题和抗过拟合方面表现优异。通过核函数如RBF,SVM能有效处理复杂边界问题。完整案例展示了SVM在非线性数据集上的应用,包括模型训练、评估和可视化决策边界的过程。

2025-08-10 06:10:22 813

原创 VGG 改进:融合CNN与Transformer的VGG模型

本文提出了一种结合VGG16 CNN和Vision Transformer的混合架构。该模型在传统VGG16的卷积层之间插入Transformer模块,包含三个核心组件:1) Transformer编码器层实现自注意力机制;2) Vision Transformer模块处理图像块序列;3) 主模型集成CNN和Transformer的优势。该架构既能提取局部特征,又能建模全局关系,通过可学习的位置编码和残差连接实现高效特征融合。实验表明,这种混合设计在保持CNN优势的同时,增强了模型的全局建模能力,为计算机视

2025-07-27 11:06:30 93

原创 SwinTransformer 改进:稀疏化注意力机制(Sparse Attention)

本文提出了一种改进的稀疏注意力机制(SparseAttention),通过保留top-k注意力权重显著降低了Transformer模型的计算复杂度。该方法针对SwinTransformer架构实现,包含三个关键技术:1) 稀疏注意力层仅计算和保留top-k权重,减少计算量;2) 相对位置编码保持位置感知能力;3) 自动替换机制可将原始注意力层全部替换为稀疏版本。实验表明,该方法在保持模型性能的同时提升了计算效率,特别适用于高分辨率图像处理等场景。代码实现了完整的稀疏注意力模块和模型替换流程,为Transfo

2025-07-24 15:38:08 201

原创 梯度下降法详解:优化算法的核心与实现

本文系统介绍了机器学习中的核心优化算法——梯度下降法。该方法通过沿目标函数梯度反方向迭代调整参数,寻找最优解。文章详细解析了其工作原理(如盲人下山类比)、数学推导(以二次函数为例)和实现步骤,并讨论了学习率等关键参数的影响。通过Python代码实例展示了该方法在3D数据拟合中的应用,直观呈现了损失函数动态变化和参数优化过程。梯度下降法因其通用性强、计算高效等特点,成为深度学习等领域的基石算法。

2025-07-24 12:55:17 640

原创 甲状腺结节TI-RADS分类的多目标分类头任务深度学习模型评估报告

本研究开发了一个基于ResNet50的多任务深度学习模型,用于甲状腺结节的TI-RADS分类。模型同时预测成分、回声、形状、边缘和强回声灶五个关键特征,并计算最终TI-RADS等级。在192例超声图像数据集上的评估显示:1)模型在TI-RADS等级预测总体准确率达58%,各特征预测准确率95%-99%;2)当假设成分和强回声灶预测正确时,总分差异在±1分内的准确率达95%。该研究为甲状腺结节的标准化评估提供了有效工具,具有临床应用价值。完整代码可通过CSDN下载获取。

2025-07-18 12:13:58 223

原创 具身智能与人形机器人:技术革命重塑未来

        2025年,具身智能(Embodied AI)首次被写入,标志着这一技术正式成为国家战略级未来产业的核心方向。具身智能的核心在于赋予人工智能“物理身体”,使其通过多模态感知、实时决策和环境交互,实现从虚拟智能向实体智能的跨越。        作为具身智能的理想载体,人形机器人正在全球范围内迎来爆发式落地——从工厂车间到救援现场,从马拉松赛道到家庭客厅,一场“碳硅共生”的文明图景正加速展开。

2025-07-06 14:33:17 2179

原创 SwinTransformer 改进:小波+注意力模块(Wavelet-Guided Attention)

本文提出了一种结合Swin Transformer和小波引导注意力模块(WGAM)的创新模型架构。WGAM通过Haar小波分解将特征图分为四个子带(LL,LH,HL,HH),并分别应用通道注意力和空间注意力机制,同时为各子带分配可学习权重。该模块被集成到Swin Transformer的patch embedding层之后,在不显著增加计算复杂度的情况下,实现了多尺度特征提取和自适应特征增强。实验表明,这种混合架构特别适合高分辨率图像分类、医学图像分析和遥感图像处理等任务。模型采用模块化设计,可灵活集成到其

2025-06-21 10:24:37 316

原创 基于EfficientNet的手势识别计算器系统设计与实现

本文提出了一种基于EfficientNet的手势识别计算器系统,通过深度学习技术实现了1-9手势数字的准确识别和基本算术运算。系统采用EfficientNet-B0网络架构,经过迁移学习和微调训练,在测试集上达到99%的识别准确率。PyQt5构建的图形界面支持用户上传手势图片并执行加减乘除运算,结果实时显示。研究表明该系统具有识别精度高、交互自然、操作简便等特点,在教育、辅助计算等领域具有应用价值,但仍存在仅支持静态手势识别等局限性。

2025-06-21 08:26:34 83

原创 UNet 改进:结合CAM注意力与DLKA注意力的改进UNet

本文提出一种改进的UNet网络架构,通过引入通道注意力模块(CAM)和动态大核注意力模块(DLKA)显著提升特征提取能力。该网络采用经典的编码器-解码器结构,核心创新点包括:1)Triplet_DoubleConv模块整合常规卷积、CAM和DLKA;2)CAM模块通过双路径池化学习通道重要性;3)DLKA模块使用7×7深度可分离卷积捕获大范围空间关系。网络特别适用于医学图像分割等精细任务,在保持UNet优势的同时增强了对长距离依赖和重要特征的捕捉能力。完整PyTorch实现展示了模块化设计,便于迁移应用。

2025-06-19 16:43:15 236

原创 EfficientNet 改进:StripCGLU模块的创新与应用

本文提出了一种改进的EfficientNet-b0模型,核心创新是通过引入StripCGLU模块来提升网络性能。StripCGLU结合了水平/垂直条带卷积和GLU激活机制,具有参数效率高、计算量少的优点。改进策略包括选择性替换部分MBConv为StripCGLU模块(每隔3个块插入),同时保留早期层结构。测试表明该模型适用于移动端视觉任务,在保持效率的同时提升性能。代码实现包含模块定义、模型构建及测试部分,展示了如何通过精心设计的模块改进现有网络架构。

2025-06-17 17:42:50 71

原创 SwinTransformer 改进:结合DLKA与SSPP的模型架构

本文提出了一种创新的计算机视觉模型架构,结合Swin Transformer、动态大核注意力(DLKA)和空间金字塔池化(SSPP)模块。该设计融合了Transformer的全局建模能力与CNN的局部特征提取优势,其中DLKA模块通过通道和空间注意力增强局部特征提取,SSPP模块实现多尺度特征融合。模型在Swin Transformer基础上插入这两个模块,形成兼顾全局-局部特征表达和多尺度处理的混合架构。实验验证表明,该模型适用于需要同时关注细粒度细节和全局上下文的视觉任务,为计算机视觉模型设计提供了新的

2025-06-17 13:27:09 199

原创 ShuffleNet 改进:与通道注意力机制(CAM)的结合实现

本文提出了一种改进的ShuffleNetV2模型,通过集成通道注意力机制(CAM)增强特征表示能力。CAM模块采用双分支结构(平均池化+最大池化)学习通道权重,并使用带压缩比的MLP减少参数量。模型保留了ShuffleNetV2的轻量特性,支持预训练权重加载,通过维度转换技巧将CAM无缝集成到网络中。实验验证表明,该方法在保持高效性的同时提升了模型性能,为轻量级网络设计提供了有效参考。代码开源,可直接应用于图像分类等任务。

2025-06-09 16:20:40 129

原创 改进系列(13):基于改进U-ResNet的脊椎医学图像分割系统设计与实现

本文提出一种改进的U-ResNet医学图像分割系统,通过融合残差连接、通道注意力机制和空间金字塔池化模块,显著提升分割精度。系统采用端到端深度学习框架,实现数据预处理、模型训练到可视化分析全流程自动化。实验表明,该方法平均DSC达0.92以上,优于传统分割网络,并提供友好GUI界面支持交互式操作。改进的网络架构包含多级残差块编码器、多尺度瓶颈层和带注意力机制的解码器,配合联合损失函数优化,有效解决医学图像分割中的特征提取不足和小目标分割难题。系统还实现了六种评估指标计算和多种可视化分析功能。

2025-06-09 13:42:51 807

原创 MobileNet 改进:基于MobileNetV2和SSPP的图像分类

本文介绍了一种结合MobileNetV2和空间金字塔池化(SSPP)的轻量级图像分类模型。该模型采用MobileNetV2作为特征提取器,并集成了自定义SSPP模块,通过多尺度池化增强特征表达能力。模型结构包含特征提取、SSPP处理和线性分类三个部分,其中SSPP支持可配置的池化层级(默认1×1,2×2,4×4)。这种设计既保持了MobileNetV2的高效特性,又提升了模型对不同尺寸特征的适应能力。测试代码验证了模型可处理224×224输入并输出正确维度的分类结果。该实现为计算机视觉任务提供了一种平衡性能

2025-06-06 09:10:32 105

原创 ResUNet 改进:融合DLKA注意力机制

本报告详细分析了一个名为UResnet的深度学习网络架构,该网络结合了U-Net的编码器-解码器结构、ResNet的残差连接以及新型的Dilated Large Kernel Attention(DLKA)注意力机制。该网络设计用于图像分割任务,通过多尺度特征提取和融合实现精确的像素级预测。

2025-06-05 14:29:39 92

原创 CentOS在vmware局域网内搭建DHCP服务器【踩坑记录】

本文记录了在CentOS系统上配置DHCP服务的完整流程:首先确保NAT模式联网,修改yum镜像源后安装DHCP服务;然后配置虚拟机网络为vmnet10(虚拟交换机模式),设置CentOS静态IP时需特别注意格式规范;接着编辑dhcpd.conf文件定义IP地址池(192.168.10.200-210)、网关和DNS;最后启动DHCP服务并设置防火墙规则。成功搭建后,Windows客户端切换为自动获取IP即可完成网络配置,通过/var/lib/dhcpd/dhcpd.leases文件可查看租约信息。全程重点

2025-06-04 18:19:32 1239 1

原创 基于深度学习(Unet和SwinUnet)的医学图像分割系统设计与实现:超声心脏分割

本文提出了一种基于深度学习的医学图像分割系统,采用U-Net和Swin-Unet两种网络架构,实现了高效的医学图像分割。系统包含完整的数据预处理、模型训练评估流程,并提供用户友好的图形界面。实验结果表明,该系统在CT等医学图像分割任务中表现优异,Swin-Unet架构性能优于传统U-Net,窗宽窗位调整显著改善CT图像分割效果。系统具有模块化设计、易扩展等特点,为临床诊断提供了有效的计算机辅助工具。

2025-06-04 09:56:29 351

原创 基于人工智能算法实现的AI五子棋博弈

本项目开发了一个基于Python和Pygame的五子棋游戏系统,包含三种对战模式:人人对战、人机对战和AI对战。系统采用模块化设计,包括棋盘管理、AI决策和主程序三大模块。AI算法基于博弈树搜索和评估函数,实现了棋型识别、Alpha-Beta剪枝、迭代加深搜索等优化技术,能够提供较强对战能力。系统支持自定义游戏模式和AI参数,具有清晰的用户界面和交互设计。未来可进一步优化算法性能并扩展功能,如增加难度选择、网络对战等。项目代码结构合理,便于后续开发和改进。

2025-06-03 15:26:16 1347

原创 NLP实战(5):基于LSTM的电影评论情感分析模型研究

本研究提出了一种基于双向LSTM的深度学习模型,用于电影评论的细粒度情感分类(5分类)。模型采用词嵌入层(100维)、双向LSTM层(2层256维)和全连接层结构,在标准数据集上通过5折交叉验证评估,平均准确率达到55.52%。实验结果显示模型能够有效区分负面、中性到正面的情感表达,其中中性情感与"有点积极/负面"的区分存在改进空间。研究提供了完整的数据预处理流程、模型架构和训练策略,代码已实现模块化,便于复现。未来可结合预训练词向量和注意力机制进一步提升性能。

2025-06-03 13:27:38 1243

原创 U-ResNet 改进:集成CoordinateAttention(坐标注意力)

本文介绍了一种名为UResNet的混合神经网络结构,它结合了ResNet的残差连接、UNet的编码-解码架构以及坐标注意力机制。该网络通过BasicBlock/BottleNeck构建块实现特征提取,采用VGGBlock进行卷积处理,并引入CoordinateAttention模块增强位置感知。在编码阶段逐层下采样,解码阶段通过上采样和跳跃连接恢复分辨率,最终输出分割结果。代码实现展示了完整的网络架构和数据处理流程,测试结果表明该模型能有效处理224×224的输入图像。这种创新组合利用了不同网络的优点,为图

2025-06-02 11:12:45 94

原创 U-ResNet 改进:集成特征金字塔网络(FPN)

本文介绍了UResNet模型的设计与实现,该模型融合了U-Net的编码器-解码器结构、ResNet的残差连接以及特征金字塔网络(FPN)的多尺度特征提取能力。模型包含Up模块、BasicBlock、BottleNeck、VGGBlock和FPN等核心组件,通过编码器下采样、解码器上采样与特征融合,最终输出分割结果。测试表明模型能正确处理256×256输入并输出对应尺寸的分割图。UResNet兼具U-Net的信息保留能力、ResNet的梯度缓解特性以及FPN的多尺度优势,为图像分割任务提供了灵活高效的解决方案

2025-06-02 10:18:00 407

原创 DeepSeek:不同模式(v3、R1)如何选择?

三种模型对比:基础版为默认选项;V3在开放性和规范性文本生成任务中表现优于R1,但使用R1时不宜提供示例(其自主性强)。官方提供PromptLibrary提示语库,V3和R1各有专用提示语模板,例如可将DeepSeek转化为智能体的定制提示方案(150字)

2025-05-29 15:29:02 518

原创 改进系列(12):基于SAM交互式点提示的UNet腹部多脏器分割方法研究

本文提出了一种基于点提示机制的交互式UNet网络用于腹部多脏器医学图像分割。该方法在传统UNet基础上扩展输入通道,加入点提示信息,允许用户在推理阶段通过点击前景和背景区域提供交互指导。实验采用394例腹部CT图像训练,98例验证,最终在验证集上达到Dice系数0.9358和IoU 0.8805的优异性能。与全自动方法相比,该交互式分割方案更具灵活性,能有效修正边界模糊区域的分割错误,为临床医学图像分析提供了实用解决方案。

2025-05-27 10:02:06 766

原创 传输层:TCP协议详解

TCP协议摘要:TCP是一种面向字节流的可靠传输协议,其报文首部包含端口号、序号、确认号等关键字段。通过标记位(URG/ACK/SYN等)控制连接状态,利用窗口机制和校验和确保数据传输可靠性。支持紧急指针处理优先数据,采用自动重传(ARQ)和滑动窗口协议实现高效传输。接收窗口大小动态调整流量,选择确认选项优化重传机制。

2025-05-26 15:05:49 340

原创 ViT模型改进:基于双路径的多尺度特征融合

本文介绍了一种结合Vision Transformer (ViT) 和 ConvNeXt 的双路径深度学习模型,该模型通过多尺度处理和特征融合机制,在图像分类任务中表现出色。模型的核心组件包括多尺度模块和特征融合模块,分别用于捕获不同尺度的空间信息和自适应融合两种架构的特征。多尺度模块利用不同空洞率的卷积并行处理输入特征,而特征融合模块则通过注意力机制动态调整ViT和ConvNeXt特征的权重。双路径模型的设计充分发挥了ViT在全局特征捕获和ConvNeXt在局部特征提取上的优势,并通过预训练权重加速收敛。

2025-05-23 08:26:57 201

原创 插值算法 - 图像缩放插值QT

本文介绍了一个基于PyQt5和OpenCV的图像缩放插值演示工具的实现。该工具允许用户上传本地图片(PNG/JPG/JPEG格式),选择四种常见的插值方法(最近邻插值、双线性插值、双三次插值、区域像素关系插值),并通过滑块实时调整缩放比例(0.1倍到4.0倍),同时并排显示原始图像和缩放后的图像。工具的核心功能包括图像加载与显示、插值方法处理和缩放应用。代码结构清晰,主类ImageScalingGUI负责构建GUI界面和处理用户交互,核心函数apply_scaling根据用户选择的插值方法应用不同的Open

2025-05-22 18:04:18 348

原创 改进系列(11):基于TransUNet改进SA和特征金字塔注意力模块:心脏超声分割

TransUNet是一种结合了Transformer和U-Net架构的医学图像分割模型,它通过将Transformer的强大全局建模能力与U-Net的局部特征提取能力相结合,在医学图像分割任务中表现出色。

2025-05-14 15:43:37 1106

原创 DenseUnet 改进:结合RepHMS动态调整尺度模块

DenseUNet是一种创新的图像分割网络架构,结合了DenseNet的特征提取能力和U-Net的多尺度特征融合机制。其核心创新在于引入了RepHMS模块,该模块支持动态多尺度特征调整,能够根据目标尺寸灵活处理特征图。DenseUNet基于DenseNet-161构建,包含编码路径和解码路径,通过RepHMS模块在解码路径的每个阶段进行多尺度特征调整,并与编码路径的特征进行融合。网络还采用了密集跳跃连接,确保特征的有效传递和重用。DenseUNet支持任意输入通道数和可配置的输出类别数,适用于需要精确像素级

2025-05-14 07:30:00 107

原创 传输层:UDP协议

UDP(User Datagram Protocol,用户数据报协议)是一种无连接的传输层协议,适用于对实时性要求高但允许少量丢包的应用,如视频流和DNS查询。UDP报文由8字节的头部和可变长度的数据部分组成。头部包括源端口号、目的端口号、报文长度和校验和。校验和用于检测传输错误,计算时包括伪头部、UDP头部和数据部分。UDP的特点是无连接、不可靠和轻量级,适用于低延迟场景。示例报文展示了如何构造一个简单的UDP报文。

2025-05-13 19:40:35 495

原创 网络层:ARP协议(原理、攻击和防御)

声明:本文只做原理讲解,分享技术。一切实验均在虚拟机中实现

2025-05-13 10:33:03 259

原创 FCN改进:CBAM注意力机制增强FCN-ResNet50分割模型

本文介绍了一个结合CBAM(Convolutional Block Attention Module)注意力机制的FCN-ResNet50语义分割模型的实现。CBAM模块通过通道注意力和空间注意力机制,帮助模型聚焦于图像中的重要特征和区域,从而提高分割精度。代码首先实现了CBAM模块,接着在FCN-ResNet50模型的ResNet50骨干网络的四个层级后分别添加了CBAM模块,最后进行了前向传播测试。测试结果显示,模型能够输出5个类别的分割概率图。这种设计通过在不同层级添加注意力模块,捕捉不同尺度的特征,

2025-05-13 09:24:40 680

原创 网络层:ICMP协议

ICMP(Internet Control Message Protocol)是IP协议的一部分,用于发送差错报告和网络诊断信息。其报文格式包括类型和代码字段,用于标识不同的差错类型。常见的差错报告报文包括TTL过期、目标主机不可达和路由重定向。TTL过期表示数据包在传输过程中超过了生存时间;目标主机不可达表示无法找到目标网络的路由;路由重定向则指示更优的路由路径。此外,ping命令用于测试网络连通性,tracert命令用于追踪数据包路径,pathping命令结合了ping和tracert的功能,提供更详细

2025-05-12 18:14:53 235

原创 DeepSeek+Kimi实战:PPT制作教程

如下:生成完了,进行复制:如下:Kimi - 会推理解析,能深度思考的AI助手选择这里进行将deepseek生成的复制进去生成ppt可以选择模板,点生成即可如下:可以自行编辑或者直接下载下载即可:会自动在网页弹窗参考制作的ppt:【免费】人工智能授课ppt参考资源-CSDN文库

2025-05-08 17:49:25 521

原创 DeepSeek+即梦AI实战:图片制作教程

复制这里: 如下:即梦AI - 一站式AI创作平台点进这里复制即可:如下: 效果不能说差吧,相比之前自己的提示词,确实好了不少

2025-05-08 15:29:32 279

原创 第20章:深度学习图像分割实战之UNet与DeepLabV3的对比分析【脊椎分割实验】

本文实现了一个完整的图像分割项目框架,通过对比UNet和DeepLabV3两种经典网络,展示了不同架构在分割任务上的表现差异。项目提供了从数据预处理到结果可视化的完整流程,可以作为图像分割任务的开发模板。实验结果表明,没有绝对优越的模型,实际应用中需要根据具体任务需求和数据特点选择合适的架构。本文通过对比两种经典分割网络——UNet和DeepLabV3,分享一个完整的图像分割项目实现,包括数据预处理、模型训练、评估指标可视化和模型对比分析。可以自己将模型扩充多个,然后,这里填对应的json结果即可。

2025-05-07 10:20:14 1462

原创 opencv实战:银行卡卡号识别

在当今数字化时代,光学字符识别(OCR)技术变得越来越重要。本文将详细介绍如何使用来识别银行卡的卡号,并在原图上标注识别结果。

2025-05-06 18:46:33 920

乳腺癌细胞分割图像语义分割数据集(约50张数据和标签,已处理完可以直接训练,2类别图像分割)

【标签信息,0 background,1 乳腺癌查看classes文件】 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,40张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,17张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 AI改进网络介绍:https://blog.csdn.net/qq_44886601/category_12858320.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-08-06

基于改进U-ResNet的医学图像分割系统,包含训练、评估和可视化推理全流程

该代码实现了一个基于改进U-ResNet的医学图像分割系统,包含训练、评估和可视化推理全流程。系统采用PyQt5构建交互式界面,核心功能如下: 1. **模型架构**: - 主干网络为融合ResNet模块的U-ResNet,包含编码器-解码器结构。 - 创新性加入通道注意力模块(CAM)和空间金字塔池化(SSPP),增强特征提取能力。 - 使用联合损失函数(Dice Loss + CrossEntropy Loss)优化多类别分割任务。 2. **训练流程**: - 支持余弦退火学习率衰减、Adam优化器,自动计算模型参数量和FLOPs。 - 实时记录训练指标(mIoU、Dice等),保存最佳模型和完整训练日志(JSON格式)。 - 提供数据增强(随机翻转)和灰度值映射机制,适配不同医学影像数据集。 3. **交互式推理界面**: - 基于PyQt5的GUI支持图像上传、实时分割和结果对比显示。 - 采用多类别颜色编码(6种预设颜色+随机柔和色),直观展示分割结果。 - 保留原始图像与掩码叠加显示功能,增强结果可解释性。 4. **评估体系**: - 综合混淆矩阵计算10+项指标(全局准确率、类别IoU等)。 - 自动生成损失曲线、指标趋势图和学习率衰减曲线。 - 支持测试集独立评估,输出结构化报告。 技术亮点: - **模块化设计**:模型组件(CAM/SSPP)可独立复用,便于扩展。 - **端到端流程**:从数据预处理到模型部署的全链条支持。 - **医学影像优化**:针对CT等影像的窗宽窗位处理、多类别灰度映射等专业特性。 典型应用场景: - 器官分割(肝脏、肺部等) - 病变区域检测 - 医学影像定量分析

2025-08-06

基于U-Net和Attention U-Net的医学图像分割系统

这个代码实现了一个基于U-Net和Attention U-Net的医学图像分割系统,主要用于处理CT等医学图像的语义分割任务。系统包含完整的数据处理、模型训练、评估和预测流程,具有以下特点: 1. **数据处理模块**(dataset.py): - 支持自定义图像和掩码路径、格式及尺寸。 - 提供数据增强功能(随机翻转)和CT图像的窗宽窗位调整(对比度增强)。 - 通过灰度值映射处理多分类标签,适配不同分割任务。 2. **模型架构**(model.py): - 实现标准U-Net和带注意力机制的Attention U-Net,支持多类别分割。 - 包含卷积块、上采样模块、循环卷积块和注意力机制模块,结构清晰且易于扩展。 - 通过跳跃连接和注意力门控机制提升特征融合效果。 3. **训练流程**(train.py): - 支持学习率余弦衰减、AdamW优化器,训练过程记录损失和评估指标(Dice、IoU等)。 - 使用混淆矩阵计算各类别和全局的精确率、召回率、F1分数等指标。 - 自动保存最佳模型和训练日志(JSON格式),并可视化训练曲线。 4. **预测模块**(predict.py): - 加载训练好的模型对单张图像进行分割,结果以原图叠加掩码的形式展示。 - 支持灰度值映射还原,确保输出与原始标签一致。 5. **工具函数**(utils.py): - 提供设备检测、模型初始化、指标计算、结果可视化等功能。 - 实现混淆矩阵的更新与指标计算,支持多类别评估。 - 训练过程可视化包括损失曲线、学习率衰减曲线和各类别指标变化。

2025-08-06

基于Unet实现的图像分割完整项目:遥感城镇地面信息图像分割 (送denseUnet分割代码)

数据集采用【遥感城镇地面信息图像分割 】,数据在data目录下,划分了训练集和验证集。【代码可一键运行】 【介绍】分割网络为DenseUnet和Unet(可以自行选择),学习率采用cos余弦退火算法。如果想在大尺度进行训练,修改base-size参数即可,优化器采用了AdamW。评估的指标为dice、iou、recall、precision、f1、pixel accuracy等等,代码会对训练和验证集进行评估,结果保存runs下的json文件中。 网络推理的时候,会自动将inference/img下所有图像进行推理,并且保存在infer_get、show下,前者是推理gt阈值图像,后者是img+推理gt的掩膜效果 更多医学图像语义分割实战:https://blog.csdn.net/qq_44886601/category_12816068.html

2025-07-27

基于UNet、UNet++、UNet3+实现的遥感城市地面目标图像的分割项目,包含可视化QT推理界面【pytorch实现】

基于UNet、UNet++、UNet3+实现的航拍下的海路区域分割项目,包含可视化QT推理界面【pytorch实现】 数据集采用【遥感城市地面目标图像分割】,数据在data目录下,划分了训练集和验证集。【代码可一键运行】 【介绍】分割网络为UNet、UNet++、UNet3+(可以自行选择),学习率采用cos余弦退火算法。如果想在大尺度进行训练,修改base-size参数即可,优化器采用了AdamW。评估的指标为dice、iou、recall、precision、f1、pixel accuracy等代码会对训练和验证集进行评估。如果有测试集的话,也会自动进行评估 网络推理的时候,会生成QT窗口,直接上传图片即可 更多医学图像语义分割实战:https://blog.csdn.net/qq_44886601/category_12816068.html 医学图像改进:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-07-27

遥感城市图像语义分割数据集(约1000张数据和标签,已处理完可以直接训练,8类别图像分割)

【海陆区域的分割,标签信息,0 背景 1 建筑等查看classes文件】 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,800张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,300张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 AI改进网络介绍:https://blog.csdn.net/qq_44886601/category_12858320.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-07-27

夜间交通车辆、行人图像目标检测数据【已标注,约9000张数据和标签,YOLO 标注格式】

类别个数【4】:bicycle car dog person【具体参考classes文件】 数据集做了7:3训练集、验证集划分。 yolov5的改进实战:https://blog.csdn.net/qq_44886601/category_12605353.html 【更多图像分类、图像分割(医学)、目标检测(yolo)的项目以及相应网络的改进,可以参考本人主页:https://blog.csdn.net/qq_44886601/category_12803200.html】

2025-07-24

轻量级网络MobileUnet实现的医学图像语义分割项目:TBI 病损区域分割

数据集采用【TBI 病损区域】,数据在data目录下,划分了训练集和验证集。【代码可一键运行】 本项目训练了50个epoch,dice指标约为0.8左右,数据集约有1w张图片和标签。 【介绍】分割网络为MobileUnet和EfficientUnet(可以自行选择),学习率采用cos余弦退火算法。如果想在大尺度进行训练,修改base-size参数即可,优化器采用了AdamW。评估的指标为dice、iou、recall、precision、f1、pixel accuracy等等,代码会对训练和验证集进行评估,结果保存runs下的json文件中。 网络推理的时候,会自动将inference/img下所有图像进行推理,并且保存在infer_get、show下,前者是推理gt阈值图像,后者是img+推理gt的掩膜效果 更多医学图像语义分割实战:https://blog.csdn.net/qq_44886601/category_12816068.html

2025-07-19

基于Swin Transformer的SAM交互式图像分割方法研究:卫星视角下的城镇地面目标图像分割

摘要: 本文提出了一种基于Swin Transformer架构的交互式图像分割方法,通过引入点提示机制实现用户引导的精确分割。该方法采用编码器-解码器结构,在编码阶段利用Swin Transformer的层次化特征提取能力,在解码阶段结合跳跃连接恢复空间细节。实验结果表明,该方法在标准数据集上取得了较高的分割精度(mIoU达到0.8),同时支持用户通过点击交互优化分割结果。本文详细介绍了网络架构设计、训练策略以及交互式推理系统的实现。 交互式图像分割是计算机视觉领域的重要研究方向,它允许用户通过简单的交互(如点击、画线)指导算法完成精确分割。传统方法如GrabCut依赖人工设计的能量函数,而深度学习方法通过学习复杂特征表示显著提升了性能。本文基于Swin Transformer架构,设计了一种端到端的交互式分割系统,主要贡献包括: 提出了四通道输入机制,将RGB图像与点提示通道融合 设计了基于Swin UNet的轻量级网络结构 实现了完整的训练-推理流程和可视化交互界面

2025-07-27

基于ResUNet+SSPP+CAM+联合损失改进的完整图像分割项目、有效涨点!

代码实现了一个基于UNet架构的医学图像分割系统,支持标准UNet模型,能够自动处理CT等医学影像数据的分割任务。 系统采用PyTorch框架构建,包含完整的数据加载、模型训练、评估和可视化功能,使用交叉熵损失函数和AdamW优化器进行训练,并通过余弦退火策略调整学习率。训练过程中会计算Dice系数、IoU、精确率、召回率等指标,并将结果以JSON格式保存,同时提供损失曲线、学习率衰减曲线等多维度可视化功能。 代码通过命令行参数灵活配置,支持自定义输入尺寸、批次大小等超参数,能够自动分析掩码图像确定分割类别数,并保存最佳模型权重,为医学图像分割任务提供了完整的解决方案。同事提供了美观的可视化推理界面,可以一键推理。 【改进策略】1.加入SSPP模块 2.加入CAM注意力模块 3.采用多类别的交叉熵和dice 损失 更多unet、swinUnet改进:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-07-27

深度学习基于Transformer增强的VGG16卷积神经网络模型设计:图像分类任务中的特征提取与性能提升

内容概要:本文介绍了一个结合了卷积神经网络(CNN)和Transformer架构的混合模型——VGGWithTransformer。该模型在经典的VGG网络基础上,在特定阶段插入了VisionTransformer模块,以增强模型对全局信息的理解能力。VisionTransformer模块包含多个Transformer编码层,每个编码层实现了自注意力机制和前馈神经网络。通过将图像划分为多个补丁,并为每个补丁添加位置嵌入,然后送入Transformer进行处理,最后再投影回原始维度。VGGWithTransformer模型在特定的卷积层之后可以选择性地插入Transformer模块,以提升模型性能。此外,还提供了模型初始化权重的方法,确保模型训练初期具有较好的收敛性。; 适合人群:具备一定深度学习基础,特别是熟悉CNN和Transformer架构的研究人员和工程师。; 使用场景及目标:①用于图像分类任务,特别是在需要结合局部特征提取和全局信息理解的场景下;②探索Transformer与传统CNN结合的效果,评估其在不同数据集上的表现;③为研究人员提供一个可扩展的框架,便于进一步优化和改进。; 阅读建议:本文涉及复杂的深度学习概念和技术细节,建议读者先掌握CNN和Transformer的基本原理。同时,可以通过调整不同配置参数(如插入Transformer的位置、层数等)来实验和理解模型的工作机制。

2025-07-27

钢铁表面缺陷分割数据集

钢铁表面缺陷分割数据集,共100张图片和mask

2025-07-27

稀疏注意力机制改进的Swin Transformer模型

这段代码实现了一个基于稀疏注意力机制的改进版Swin Transformer模型。代码主要包含三个关键部分:SparseAttention类、replace_attention_layers函数和create_model函数。SparseAttention类是对标准Transformer注意力机制的改进,它通过引入稀疏性来减少计算复杂度。在forward方法中,该实现只保留top-k的注意力权重(k由sparsity_factor参数控制),其余权重置零,这种稀疏化处理可以显著降低计算量同时保持模型性能。此外,该类还包含了相对位置偏置机制,通过relative_position_bias_table和relative_position_index来捕捉位置信息。replace_attention_layers函数递归遍历模型的所有模块,将原始Swin Transformer中的标准注意力层替换为上述稀疏注意力层,同时保留原始参数配置。create_model函数则负责构建完整的模型架构,它基于torchvision中的预训练Swin-T模型,替换注意力层后修改了分类头部分。这种稀疏注意力机制特别适合处理高分辨率图像任务,因为随着输入尺寸增大,标准注意力层的计算复杂度会呈平方级增长,而稀疏注意力通过控制sparsity_factor可以在计算效率和模型性能之间取得平衡。代码最后还提供了简单的测试用例,展示了模型的基本使用方法。整体而言,这段代码展示了如何通过修改注意力机制来优化Transformer架构的计算效率,为资源受限的应用场景提供了可行的解决方案。

2025-07-24

基于深度学习的甲状腺结节多目标分类系统、已经训练完成、包含数据和代码

项目概述 本项目是一个基于深度学习的甲状腺结节多任务分类系统,旨在通过分析甲状腺超声图像,同时预测结节的多个临床相关特征。系统采用ResNet50作为基础模型,构建了一个多任务学习框架,能够同时评估结节的5个关键TI-RADS分类指标。 --- 各 TI-RADS 特征准确率 --- 总比较样本数: 192 Composition 准确率: 97.40% (187/192 匹配) Echogenicity 准确率: 96.35% (185/192 匹配) Shape 准确率: 99.48% (191/192 匹配) Margin 准确率: 96.35% (185/192 匹配) Echogenic Foci 准确率: 95.31% (183/192 匹配)

2025-07-15

医学图像分割数据:TBI(伤性脑损伤)MR图像切片分割【包含3个切面的切片数据、可视化代码、二值分割】

医学图像分割数据:TBI(伤性脑损伤)MR图像切片分割【包含3个切面的切片数据、可视化代码、二值分割】 【其中mask中、0为背景,1为TBI区域等2类别】 数据集:分别从轴位面(横端面)、冠状面、矢状面切分出2D图像。为了方便分割,这里切片的时候去除了ROI区域不足3%的数据,并且做了Windowing增强,全部缩放为256*256大小,并且标签做了二值化处理,前景区域全部处理为1灰度值。为了方便观察mask,提供了可视化代码(show.py) 数据集介绍:分为x、y、z轴的切面图像 x轴:images图片目录+masks模板目录,1400张图片和对应的mask图片 y轴:images图片目录+masks模板目录,1300张图片和对应的mask图片 z轴:images图片目录+masks模板目录,1400张图片和对应的mask图片 【更多医学图像分割代码及改进,参考本人专栏:https://blog.csdn.net/qq_44886601/category_12858320.html】

2025-07-15

伤性脑损伤(TBI)MR图像语义分割数据集(约11000张数据和标签,已处理完可以直接训练,2类别图像分割)

【标签信息,0 background,1 TBI查看classes文件】 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,8800张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,3700张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 AI改进网络介绍:https://blog.csdn.net/qq_44886601/category_12858320.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-07-15

47张创伤性脑损伤(TBI)的3D数据和标签,nii.gz格式,已经标注

47张创伤性脑损伤(TBI)的3D数据和标签,nii.gz格式,已经标注,自动检测与分割 3D TBI 病损区域(基于 T1‑加权 MRI)

2025-07-15

基于transunet和transunet改进【空间注意力模块SA+特征金字塔+损失改进】分割系统:海岸线分割

代码实现了一个基于transunet和transunet改进架构的医学图像分割系统,支持标准UNet模型,能够自动处理CT等医学影像数据的分割任务。 系统采用PyTorch框架构建,包含完整的数据加载、模型训练、评估和可视化功能,使用交叉熵损失函数和AdamW优化器进行训练,并通过余弦退火策略调整学习率。训练过程中会计算Dice系数、IoU、精确率、召回率等指标,并将结果以JSON格式保存,同时提供损失曲线、学习率衰减曲线等多维度可视化功能。 代码通过命令行参数灵活配置,支持自定义输入尺寸、批次大小等超参数,能够自动分析掩码图像确定分割类别数,并保存最佳模型权重,为医学图像分割任务提供了完整的解决方案。推理采用QT可视化推理,可保存结果。 【改进策略】1.空间注意力模块 2.特征金字塔模块 3.采用多类别的交叉熵和dice 损失 更多unet、swinUnet改进:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-06-30

基于网页版推理实现的ResUNet和UNet医学图像分割项目:海岸线图像分割

数据集采用【海岸线图像分割】,数据在data目录下,划分了训练集和验证集。【代码可一键运行】 【介绍】分割网络为ResUNet和UNet(可以自行选择),学习率采用cos余弦退火算法。如果想在大尺度进行训练,修改base-size参数即可,优化器采用了AdamW。评估的指标为dice、iou、recall、precision、f1、pixel accuracy等等,代码会对训练和验证集进行评估,结果保存runs下的json文件中。 网络推理的时候采用可视化推理,运行infer脚本会打开本地网页,上传图片即可进行推理 更多医学图像语义分割实战:https://blog.csdn.net/qq_44886601/category_12816068.html 图像分类、语义分割网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html

2025-06-30

200多张高质量的裂缝分割数据集、已经标注

200多张高质量的裂缝分割数据集、已经标注

2025-07-06

图像分类数据集:家具物品的图像识别分类【包括划分好的数据、类别字典文件、python数据可视化脚本】

【数据集详情】data目录下分为2个目录,train为训练集、val为验证集,存放各自的同一类数据图片。train数据总数2000,val数据总数400。可以用作yolov5的分类数据集。为了方便查看数据,提供了可视化py文件,随机传入4张图片即可展示,并且保存在当前目录。 关于神经网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 类别5: { "0": "book", "1": "chair", "2": "laptop", "3": "person", "4": "table" }

2025-08-10

深度学习之图像分类数据集:动植物图像分类数据集(10分类)

深度学习之图像分类数据集:动植物图像分类数据集(10分类),数据按照文件夹储存,不需要处理可直接用作深度学习训练数据。 数据分为以下10类:蛀{ "0": "Amphibia", "1": "Animalia", "2": "Arachnida", "3": "Aves", "4": "Fungi", "5": "Insecta", "6": "Mammalia", "7": "Mollusca", "8": "Plantae", "9": "Reptilia" } 下载解压后的图像目录:训练集(7000张图片)和测试集(3000张图片) data-train 训练集-每个子文件夹放同类别的图像,文件夹名为分类类别 data-test 测试集-每个子文件夹放同类别的图像,文件夹名为分类类别 除此之外,提供了classes的json字典类别文件,以及可视化的脚本py文件

2025-08-10

卫星拍摄下的水体图像语义分割数据集(约2300张数据和标签,已处理完可以直接训练,2类别图像分割)

【海陆区域的分割,标签信息,0 背景 255 水体查看classes文件】 数据集介绍:【已经划分好】 训练集:images图片目录+masks模板目录,1900张左右图片和对应的mask图片 验证集:images图片目录+masks模板目录,800张左右图片和对应的mask图片 除此之外,包含一个图像分割的可视化脚本,随机提取一张图片,将其原始图片、GT图像、GT在原图蒙板的图像展示,并保存在当前目录下 AI改进网络介绍:https://blog.csdn.net/qq_44886601/category_12858320.html 更多图像分割网络unet、swinUnet、trasnUnet改进,参考改进专栏:https://blog.csdn.net/qq_44886601/category_12803200.html

2025-08-10

深度学习基于EfficientViMBlock的UNet网络设计与实现:图像分割任务中的多头自注意力机制应用

内容概要:本文档展示了基于PyTorch构建的UNet神经网络模型,特别集成了EfficientViMBlock模块,增强了网络的特征提取能力。EfficientViMBlock模块结合了深度可分离卷积(Depthwise Convolution)、多头自注意力机制(Multi-head Self-Attention)以及前馈神经网络(Feed-Forward Network),并通过gamma参数调节不同分支的贡献。UNet架构包括编码器(下采样)和解码器(上采样)两部分,其中DoubleConv用于连续两次卷积操作,Down负责缩小特征图尺寸,Up用于放大特征图并融合来自编码器的特征,最后由OutConv输出分类结果。整个网络支持是否使用EfficientViMBlock的选择。 适合人群:对深度学习有一定了解,尤其是熟悉PyTorch框架的开发者或研究人员。 使用场景及目标:①医学影像分割任务,如肿瘤检测;②遥感图像处理,如地物分类;③自动驾驶领域,如道路标记识别;④研究新型卷积与注意力机制结合的模型效果。 阅读建议:本代码示例侧重于UNet网络的具体实现细节,特别是EfficientViMBlock的设计思想及其在UNet中的应用方式。建议读者先理解各组件的功能后再深入研究整个网络结构,同时可以通过调整`use_vim`参数对比有无EfficientViMBlock时模型性能的变化。

2025-08-10

基于DenseNet架构的图像分类系统,结合了Triplet Attention机制改进项目

该代码实现了一个基于DenseNet架构的图像分类系统,结合了Triplet Attention机制,具有以下亮点: 1. **模块化设计** 代码结构清晰,分为训练(`train.py`)、预测(`predict.py`)和工具函数(`utils.py`)三个模块,各司其职。工具模块封装了数据加载、模型构建、训练逻辑和可视化功能,便于复用和维护。 2. **Triplet Attention增强模型性能** 在DenseNet的过渡层中嵌入了自定义的Triplet Attention模块,通过卷积生成查询、键和值,利用注意力机制动态调整特征权重,提升了模型对重要特征的捕捉能力。这种设计在保持轻量化的同时增强了模型表现。 3. **全面的训练监控与可视化** 训练过程中实时记录损失、准确率、学习率等指标,并生成损失曲线、准确率曲线、混淆矩阵及PRSF(Precision、Recall、Specificity、F1)曲线。混淆矩阵支持类别级指标统计,帮助用户直观分析模型性能。 4. **灵活的配置与优化** 通过命令行参数(如模型类型、学习率、优化器)支持快速配置实验。提供学习率余弦衰减策略,并允许冻结预训练层参数(迁移学习),平衡训练效率与模型效果。 5. **高效的工程实践** - 数据加载使用多线程优化,提升IO效率。 - 支持训练中断后恢复(保存最佳和最后权重)。 - 自动生成类别标签的JSON文件,确保预测阶段标签一致性。 - 图像预处理集成标准化和增强(如随机旋转),增强泛化性。 6. **详细的日志与结果保存** 训练日志以JSON格式保存,包含超参数、每轮指标及模型参数量,便于后续分析与复现。结果图像(如混淆矩阵)自动保存,形成完整实验记录。

2025-08-06

基于PyQt5与UNet系列模型的医学图像分割系统设计与实现【unet、unet++、unet3+模型】

这个代码实现了一个基于PyQt5的医学图像分割系统,主要亮点如下: 1. **模块化设计**:代码分为训练(train.py)、推理(main.py)和工具(utils.py)三个模块,结构清晰。训练模块支持多种UNet变体(UNet、UNet++、UNet3+),并自动计算输出类别数。 2. **高效训练策略**:采用自适应学习率衰减(Cosine策略)和Adam优化器,支持交叉熵损失和多种评估指标(Dice、IoU、F1等)。训练过程记录完整日志,包括损失曲线和指标可视化。 3. **灵活的数据处理**:MyDataset类实现了数据增强(随机翻转)和CT图像窗宽/窗位调整,支持多类别分割标签的自动映射。 4. **用户友好的GUI**:PyQt5界面提供上传图片、显示原始图像、分割结果和叠加效果的功能,布局美观且响应迅速。支持实时推理和结果可视化。 5. **高性能推理**:优化了推理流程,包括图像预处理、模型预测和后处理(轮廓绘制、掩膜叠加)。通过灰度映射文件(grayList.txt)实现多类别结果的灵活配置。 6. **全面的评估体系**:ConfusionMatrix类实现了像素精度、召回率、Dice系数等指标的批量计算,结果以JSON格式保存,便于分析。 系统整合了训练、评估和推理全流程,适用于医学图像分割任务,代码可扩展性强。

2025-08-06

基于UNet架构的交互式图像分割系统,支持通过边界框(Bounding Box)提示引导模型进行目标分割 系统包含训练和推理两部分,主要针对医学或自然图像中的单目标分割任务

该代码实现了一个基于UNet架构的交互式图像分割系统,支持通过边界框(Bounding Box)提示引导模型进行目标分割。系统包含训练和推理两部分,主要针对医学或自然图像中的单目标分割任务,具有以下核心特点: ### 1. **模型架构与训练** - **UNet改进**:在标准UNet基础上,输入通道扩展为4(RGB图像+边界框提示通道),输出单通道掩膜。模型通过下采样-上采样结构和跳跃连接保留多尺度特征。 - **损失函数**:采用MONAI框架的Dice-CE联合损失(`DiceCELoss`),平衡分割精度与类别不平衡问题。 - **数据增强**:支持随机水平/垂直翻转,并通过边界框随机偏移(`bbox_shift`)增强提示框的鲁棒性。 - **训练流程**:使用余弦退火学习率调度,记录损失和Dice系数,保存最佳模型权重。 ### 2. **交互式推理** - **边界框引导**:用户通过鼠标绘制目标边界框,模型将其编码为第4通道输入,引导分割特定区域。 - **实时可视化**:推理结果以二值掩膜形式输出,支持与原图叠加显示,直观展示分割效果。 ### 3. **关键创新** - **提示驱动分割**:通过边界框提示实现交互式分割,无需全图预测,提升效率。 - **动态数据适配**:`MyDataset`自动提取掩膜中的目标区域,生成对应的边界框提示,简化训练数据准备。 ### 4. **应用场景** - **医学影像**:适用于器官、病变区域的精准分割,如CT/MRI图像中的肿瘤标注。 - **工业检测**:对缺陷或特定部件进行定位与分割。 ### 5. **代码结构** - **训练端**:`train.py`整合数据加载、模型训练与评估;`dataset.py`处理数据与提示生成;`model.py`定义UNet架构。

2025-08-06

基于TransUnet的医学图像分割系统,包含数据加载、模型训练、评估和预测功能

这个代码实现了一个基于TransUnet的医学图像分割系统,包含数据加载、模型训练、评估和预测功能。以下是核心模块分析: 1. **数据模块(dataset.py)** - 自定义`MyDataset`类继承PyTorch的`Dataset`,支持多类别分割任务。 - 实现数据预处理:归一化、CT窗宽调节(可选)、双线性/最近邻插值缩放。 - 数据增强:随机水平/垂直翻转(概率50%)。 2. **训练模块(train.py)** - 采用AdamW优化器,带权重衰减(0.01)和余弦退火学习率调度。 - 使用交叉熵损失,支持多类别分割(通过`grayList.txt`自动识别类别数)。 - 评估指标全面:mIoU、Dice系数、精确率、召回率、F1分数。 - 日志系统记录训练过程,保存最佳模型(基于验证集mIoU)。 3. **预测模块(predict.py)** - 加载训练好的模型进行推理。 - 可视化结果:原始图像、预测mask、叠加效果图(带透明度调节)。 - 支持CT窗宽预处理与训练保持一致。 4. **工具模块(utils.py)** - 核心组件: - **TransUnet模型**:结合Transformer和UNet,添加CBAM注意力模块。 - **CBAM机制**:通道+空间注意力增强特征提取。 - **混淆矩阵**:实时计算多维度评估指标。 - 辅助功能:学习率曲线绘制、数据可视化、设备自动检测等。 技术亮点: 1. 采用TransUnet架构,结合CNN的局部特征提取和Transformer的全局建模能力。 2. 创新性地在Transformer模块中嵌入CBAM注意力,提升医学图像中小目标的识别。 3. 完整的训练-验证-测试流水线,提供11种评估指标,支持医学图像分析需求。

2025-08-06

完整的医学图像分割系统,包含训练、评估和可视化功能,核心基于改进的TransUnet架构【改进:TransUNet+SA+特征金字塔注意力模块和TransUNet】

这个代码实现了一个完整的医学图像分割系统,包含训练、评估和可视化功能,核心基于改进的TransUnet架构。以下是关键分析: 1. **系统架构** - **训练模块(train.py)**:采用余弦退火学习率调度和Adam优化器,支持多模型选择(TransUnet/my_TransUnet)。自动计算类别数并记录11种评估指标(mIoU/Dice等),保存最佳模型。 - **推理模块(infer_QT.py)**:PyQt5构建的GUI系统,提供三视图对比(原图/分割结果/叠加效果),支持10类颜色映射和结果保存。 - **核心工具(utils.py)**:实现Dice-CE联合损失函数、动态混淆矩阵、数据增强(水平/垂直翻转),以及自动化日志系统。 2. **技术创新点** - **混合损失函数**:联合Dice Loss(解决类别不平衡)和CE Loss(优化梯度传播),通过λ参数(0.5:0.5)平衡两者。 - **动态类别识别**:`compute_gray()`自动分析mask灰度值生成类别映射文件(grayList.txt),适应不同数据集。 - **多维度评估**:混淆矩阵实时计算像素精度、召回率、F1等指标,区分前景类别与背景。 3. **工程优化** - **资源监控**:训练时统计FLOPs(如224x224输入约4.2G)、参数量及推理延迟(约15ms/图)。 - **数据增强**:50%概率的随机翻转提升小样本泛化能力,双线性插值保持图像质量。 - **可视化系统**:PyQt5界面支持GPU加速渲染,自适应显示大尺寸医学图像(如CT的512x512)。

2025-08-06

基于改进UNet架构的医学图像分割系统,结合了SE注意力机制和Inception模块,提供完整的训练、评估和可视化功能

这个代码实现了一个基于改进UNet架构的医学图像分割系统,结合了SE注意力机制和Inception模块,提供完整的训练、评估和可视化功能。以下是核心分析: 1. **模型架构** - **SE-Inception UNet**:在标准UNet基础上,编码器引入Inception模块(并行1x1/3x3/5x5卷积和池化)增强多尺度特征提取,每个双卷积层后加入SE注意力模块(通道权重重标定),提升关键特征响应。 - **动态类别识别**:通过`compute_gray()`自动分析mask灰度值生成类别映射文件(grayList.txt),支持多类别分割任务。 2. **训练系统** - **混合训练策略**:采用余弦退火学习率调度(初始lr=0.0001,lrf=0.001)和Adam优化器,配合交叉熵损失函数。 - **全面评估指标**:实时计算11项指标(mIoU、Dice、F1等),基于验证集mIoU保存最佳模型,输出FLOPs(约15.2G)和推理时间(平均18ms@224x224)。 3. **数据流设计** - **医学图像适配**:支持CT窗宽调节(窗位40,窗宽400),双线性/最近邻插值分别处理图像和mask,保留边缘信息。 - **数据增强**:50%概率的水平/垂直翻转,归一化至[0,1]后输入模型。 4. **交互式推理** - **PyQt5 GUI**:三视图对比显示原图、分割结果(二值化)和叠加效果(红色半透明掩膜),支持PNG/JPG输入。 - **自动部署**:模型权重(best.pth)兼容ONNX导出,`grayList.txt`确保类别一致性。

2025-08-06

基于SwinTransformer图像分类完整项目

这个代码实现了一个高效的图像分类系统,主要亮点如下: 1. **先进的模型架构**: 支持Swin Transformer系列模型(t/s/b三种规模),利用其强大的全局建模能力。通过预训练权重加载和灵活的头部调整(`net.head`替换),实现快速迁移学习。 2. **专业的数据处理**: - 标准化数据增强流程(随机旋转、中心裁剪) - 自动生成类别标签字典(`class_indices.json`) - 可视化预处理效果(`train_set_display`函数) - 智能线程数控制(根据CPU核心动态调整) 3. **精细化训练控制**: - 余弦退火学习率调度(`LambdaLR`) - 分层参数冻结策略(`freeze_layers`控制特征提取层冻结) - 多优化器支持(SGD/Adam/AdamW) - 自动保存最佳和最终模型权重 4. **全面的评估体系**: - 动态混淆矩阵计算(支持Precision/Recall/F1等指标) - 训练-验证双阶段监控 - 模型复杂度分析(FLOPs和参数量统计) - 关键指标趋势可视化(loss/accuracy曲线) 5. **工程化设计**: - 完整的日志系统(JSON格式记录超参数和指标) - 模块化函数设计(数据加载、模型构建、训练流程分离) - 设备自适应(自动检测CUDA) - 结果目录自动清理重建(`mkdir`函数) 6. **预测功能增强**: - Top-K类别概率显示(支持多类别场景) - 结果可视化保存(原始图像叠加预测标签) - 轻量级部署(仅需模型权重和类别文件)

2025-08-06

集成MobileUnet和EfficientUnet两种轻量级网络的完整医学图像分割项目、包含训练、验证和推理

这个代码实现了一个高效的医学图像分割系统,主要亮点如下: 1. **模块化设计**:代码结构清晰,分为数据集处理(dataset.py)、训练(train.py)、预测(predict.py)和工具函数(utils.py)四个模块,各司其职,便于维护和扩展。 2. **灵活的数据处理**: - 支持多类别分割,自动计算标签类别(grayList.txt) - 提供CT图像窗宽窗位调整功能(window_CT) - 内置数据增强(随机水平/垂直翻转) - 统一图像尺寸处理(INTER_CUBIC插值) 3. **全面的模型支持**: - 集成MobileUnet和EfficientUnet两种轻量级网络 - 自动计算模型参数量和FLOPs - 支持多GPU训练(通过device自动检测) 4. **完善的训练监控**: - 实现余弦退火学习率调度(LambdaLR) - 实时记录训练指标(loss, IoU, Dice等) - 可视化训练过程(损失曲线、指标变化) - 自动保存最佳模型和最后模型 5. **详细的评估体系**: - 混淆矩阵计算多种指标(准确率、召回率、F1等) - 独立验证集评估 - 预测结果可视化(原图+掩码叠加) 6. **工程优化**: - 自动线程数调整(根据CPU核心数和batch大小) - 内存高效的数据加载(DataLoader) - 完整的日志系统(JSON格式保存) 代码特别适合医学图像分割任务,通过良好的设计和丰富的功能,在保持高效的同时提供了专业级的图像分割解决方案。

2025-08-06

基于VIT+InceptionDW+Focal-loss的图像分类改进项目

这个代码实现了一个基于PyTorch和PyQt5的图像分类系统,具有以下亮点: 1. **创新的模型架构**:结合了Vision Transformer (ViT) 和Inception深度可分离卷积模块,通过`ViT_With_InceptionDW`类实现了两种技术的优势互补,提升了特征提取能力。 2. **高效训练策略**: - 采用Focal Loss解决类别不平衡问题,通过调整α和γ参数优化难样本学习。 - 使用余弦退火学习率调度器(LambdaLR)实现自适应学习率衰减,提升模型收敛性。 3. **全面的评估体系**: - 支持混淆矩阵、ROC曲线、PR曲线等多维度评估,通过`ConfusionMatrix`类实现精准率、召回率等指标的自动计算与可视化。 - 动态绘制训练过程中的损失、准确率曲线,便于实时监控。 4. **用户友好的GUI界面**: - 基于PyQt5设计简洁直观的交互界面,支持图像加载、实时分类及概率展示,结果以百分比形式呈现前3个预测类别。 5. **工程化设计**: - 模块化代码结构,分离模型训练(`train.py`)、推理(`infer_QT.py`)和工具函数(`utils.py`),便于维护扩展。 - 自动生成类别字典和数据集分布图,增强可解释性。 该系统将前沿深度学习技术与工程实践结合,适用于学术研究及工业部署场景。

2025-08-06

基于Swin Transformer结合CBAM注意力机制的图像分类系统

该代码实现了一个基于Swin Transformer结合CBAM注意力机制的图像分类系统,具有以下核心亮点: ### 1. **Swin Transformer与CBAM融合** 在Swin Transformer的每个阶段嵌入CBAM模块(通道+空间注意力),通过`MultiScaleFusion`实现多尺度特征融合,显著提升模型对局部和全局特征的捕捉能力。注意力机制动态调整特征权重,增强关键区域聚焦,同时保持计算效率。 ### 2. **全面的训练监控与可视化** - **多维度指标**:记录损失、准确率、学习率,生成损失-准确率曲线、ROC/PR曲线及混淆矩阵。 - **数据集分析**:新增`plot_dataset_distribution`函数,可视化训练/验证集类别分布,辅助数据均衡性检查。 - **Focal Loss优化**:采用Focal Loss解决类别不平衡问题,通过参数`alpha`和`gamma`调整难样本权重。 ### 3. **工程化改进** - **灵活路径配置**:支持自定义结果保存路径(`--save_ret`),避免覆盖历史实验。 - **模块化设计**:训练(`train.py`)、推理(`infer_QT.py`)分离,模型构建(`utils.py`)独立,便于扩展。 - **高效评估**:集成ROC曲线、PR曲线分析,提供微平均(micro-average)指标,全面评估模型性能。 ### 4. **用户友好交互** - **PyQt5界面**:`infer_QT.py`提供图形化界面,支持图像加载、实时分类结果显示,概率可视化(Top-3类别)。 - **命令行参数**:灵活配置模型超参数(如学习率、优化器)、数据路径,适配不同实验需求。

2025-08-06

基于ResNet34并结合自注意力机制(Self-Attention)的图像分类系统

该代码实现了一个基于ResNet34并结合自注意力机制(Self-Attention)的图像分类系统,核心亮点如下: ### 1. **自注意力机制增强特征提取** 在ResNet34的每个残差块(`layer1`至`layer4`)后嵌入`SelfAttention`模块,通过计算查询(Query)、键(Key)、值(Value)的交互,动态调整特征权重。引入可学习的缩放参数`gamma`,平衡注意力输出与原特征,显著提升模型对关键区域的聚焦能力。 ### 2. **模块化与高效训练** - **训练-预测分离**:`train.py`和`predict.py`分工明确,支持端到端流程。 - **迁移学习优化**:通过`--freeze_layers`冻结预训练层,仅训练全连接层和自注意力模块,加速收敛。 - **余弦学习率衰减**:自适应调整学习率(`LambdaLR`),提升训练稳定性。 ### 3. **全面的性能监控** - **多维度指标**:实时记录损失、准确率、学习率,生成损失-准确率曲线、混淆矩阵及PRSF(Precision/Recall/Specificity/F1)曲线。 - **混淆矩阵分析**:支持类别级统计,直观展示模型误分类情况。 ### 4. **工程优化与可视化** - **数据增强**:集成随机旋转、标准化等预处理,提升泛化性。 - **资源管理**:自动适配多线程数据加载(`num_workers`),优化硬件利用率。 - **结果存档**:权重文件(`best.pth`/`last.pth`)、训练日志(JSON)、可视化图表(如混淆矩阵)统一保存至`./runs`目录。 ### 5. **用户友好设计** - **命令行参数**:支持灵活配置模型、优化器、学习率等超参数。

2025-08-06

基于ResNet架构并结合CBAM(Convolutional Block Attention Module)注意力机制的图像分类系统

该代码实现了一个基于ResNet架构并结合CBAM(Convolutional Block Attention Module)注意力机制的图像分类系统,具有以下核心亮点: ### 1. **CBAM注意力机制增强模型性能** 在ResNet的每个残差块(`layer1`至`layer4`)后嵌入CBAM模块,通过通道注意力(`ChannelAttention`)和空间注意力(`SpatialAttention`)的双重机制动态调整特征权重。通道注意力聚焦“哪些特征重要”,空间注意力定位“哪里重要”,显著提升了模型对关键特征的捕捉能力,同时保持轻量化设计。 ### 2. **模块化与可扩展性** - **训练与预测分离**:`train.py`和`predict.py`分工明确,支持模型训练、验证及推理全流程。 - **灵活模型选择**:通过命令行参数(如`--model`)支持ResNet18/34/50/101/152等多种架构,便于性能对比。 - **注意力模块解耦**:CBAM作为独立模块(`utils.py`),可快速移植到其他网络中。 ### 3. **全面的训练监控与可视化** - **多维度指标记录**:实时输出损失、准确率、学习率,并生成损失-准确率曲线、余弦学习率衰减曲线。 - **混淆矩阵分析**:支持训练集和验证集的混淆矩阵可视化,附带类别级指标(Precision、Recall、F1等)。 - **PRSF曲线**:绘制均值精确率、召回率、特异性和F1的 epoch 趋势图,直观反映模型表现。 ### 4. **高效的工程实践** - **迁移学习优化**:支持冻结预训练层(`--freeze_layers`),仅训练全连接层和CBAM模块,加速收敛。

2025-08-06

基于UNet的**交互式点提示图像分割系统**,支持用户通过点击图像指定前景/背景点,引导模型进行精准分割改进

该代码实现了一个基于UNet的**交互式点提示图像分割系统**,支持用户通过点击图像指定前景/背景点,引导模型进行精准分割。系统分为训练和推理两部分,核心特点如下: ### 1. **模型架构与训练** - **UNet改进**:模型输入为4通道(RGB图像+点提示通道),输出单通道掩膜。点提示通道通过用户点击生成,正点(前景)标记为1,负点(背景)标记为-1,增强模型对目标区域的定位能力。 - **训练流程**:使用交叉熵损失和Dice损失联合优化,支持数据增强(随机翻转)。训练日志记录mIoU、Dice系数等指标,并通过余弦退火调整学习率。 ### 2. **交互式推理** - **点提示机制**:用户通过GUI界面点击图像添加正/负样本点(左键前景,右键背景),模型实时生成分割结果。 - **可视化**:分割结果以半透明红色掩膜叠加在原图上,用户点击点以绿色(前景)或蓝色(背景)标记,提升交互直观性。 ### 3. **关键创新** - **动态点采样**:训练时从掩膜中随机采样前景点作为提示(`point_sample`参数控制数量),模拟用户交互行为。 - **灵活输入适配**:推理时自动将用户点击坐标映射到模型输入尺寸(224×224),确保提示点位置精准。 ### 4. **应用场景** - **医学影像**:适用于器官、病变的精细标注,用户可通过少量点击修正分割边界。 - **工业质检**:对缺陷区域进行快速标注,减少全图预测的计算开销。 ### 5. **代码结构** - **训练端**:`train.py`整合数据加载与训练;`dataset.py`生成随机点提示;`model.py`定义UNet架构。 - **推理端**:`infer.py`提供基于Tkinter的GUI,支持图像上传、点标注和实时分割。

2025-08-06

该代码实现了一个基于PyQt5的图像分割系统,结合了深度学习模型(CBAM-UNet)进行医学或自然图像的语义分割任务 系统分为训练和推理两部分,支持多类别分割,并提供了可视化界面

该代码实现了一个基于PyQt5的图像分割系统,结合了深度学习模型(CBAM-UNet)进行医学或自然图像的语义分割任务。系统分为训练和推理两部分,支持多类别分割,并提供了可视化界面展示原始图像、分割结果及掩膜叠加效果。 ### 核心功能 1. **模型架构**:采用CBAM-UNet,在UNet基础上引入通道和空间注意力机制(CBAM),提升分割精度。模型支持动态类别数,通过灰度值文件(grayList.txt)自动适配数据集类别。 2. **训练流程**: - 数据加载:自定义`MyDataset`类处理图像和掩膜,支持数据增强(翻转)和CT图像的窗宽调整。 - 损失函数:联合Dice Loss和交叉熵损失(`JointLoss`),平衡类别不平衡问题。 - 评估指标:通过混淆矩阵计算mIoU、Dice系数等,记录训练日志并可视化曲线(损失、学习率等)。 3. **推理界面**: - 用户上传图像后,系统调用`inference`函数生成分割结果,支持多类别颜色映射。 - 结果展示:原始图像、网络预测(彩色掩膜)、半透明叠加效果三视图。 ### 技术亮点 - **模块化设计**:训练(`train.py`)、模型(`unet.py`)、工具函数(`utils.py`)分离,便于维护。 - **动态类别适应**:通过分析掩膜灰度值自动确定输出通道数,无需手动配置。 - **CT图像优化**:窗宽调整(`ct=True`)增强对比度,适合医学影像。 - **高效推理**:模型加载与图像预处理(归一化、尺寸调整)集成,确保实时性。 ### 应用场景 适用于医学影像分割(如器官、病变区域)或自然场景中的多目标分割,提供直观的GUI界面简化操作流程。

2025-08-06

基于TransUnet架构的交互式医学图像分割系统,结合了提示框引导(类似SAM)的训练和推理机制改进篇

这个代码实现了一个基于TransUnet架构的交互式医学图像分割系统,结合了提示框引导(类似SAM)的训练和推理机制。以下是核心分析: 1. **核心架构** - **数据模块(dataset.py)**:扩展了提示框功能,通过`bbox_shift`参数(默认5像素)在目标周围生成随机偏移框,作为第四通道输入(0/1矩阵)。数据增强支持50%概率的水平/垂直翻转。 - **训练模块(train.py)**:采用Dice-CE联合损失(来自MONAI),支持SGD/Adam/RMSProp优化器,余弦退火学习率调度(lrf=0.001)。输入为4通道(RGB+提示框),输出单通道二值mask。 - **推理模块(infer.py)**:交互式GUI(Matplotlib)允许用户绘制提示框,模型基于框内信息生成分割结果,可视化显示原图、提示框和预测mask(红色高亮)。 2. **关键技术** - **提示框引导**:训练时自动从mask生成随机偏移框(`__getitem__`),推理时用户交互绘制(`onclick_box`函数),增强模型对局部特征的敏感性。 - **轻量化设计**:输入尺寸固定224×224,TransUnet配置为1层ViT块(512线性维度),在8GB GPU上batch_size可达8。 - **实时评估**:训练中计算Dice系数(侧重区域重叠)和IoU(严格边界匹配),验证集最佳模型保存策略(基于IoU)。 3. **工程实现** - **数据流**:图像归一化至[0,1]后与提示框通道拼接(`np.concatenate`),mask二值化(`np.uint8(mask == label_id)`)。 - **性能监控**:记录每epoch的loss、Dice、IoU到日志文件,可视化训练曲线(LR衰减、指标变化)。

2025-08-06

基于Swin Transformer改进SAM的交互式医学图像分割系统

该代码实现了一个基于Swin Transformer的交互式医学图像分割系统,具有以下核心特点: 1. **创新架构设计** - 采用Swin-Unet作为主干网络,融合窗口注意力机制和层级特征提取 - 输入扩展为4通道(RGB+点提示),支持交互式分割引导 - 解码器采用PatchExpand模块实现像素级上采样 2. **交互式训练流程** - 数据集类(MyDataset)自动生成点提示: - 随机采样前景点作为正样本(+1) - 无前景时使用随机背景点作为负样本(-1) - 支持数据增强(水平/垂直翻转) - 4通道输入处理(3通道图像+1通道点提示) 3. **可视化推理系统** - 基于Tkinter的GUI提供完整交互功能: - 左键添加前景点(绿色) - 右键添加背景点(蓝色) - 实时显示分割结果(红色半透明掩膜) - 点提示缩放处理,适配不同分辨率输入 4. **模型优化特性** - 使用交叉熵损失函数 - 支持余弦退火学习率衰减 - 完整训练指标记录(mIoU、Dice等) - 模型参数量约2700万(Swin-Tiny配置) 5. **医学影像专用设计** - 二分类任务优化(前景/背景) - 点提示机制模拟医生标注过程 - 掩膜结果可视化采用医学常用红色叠加 技术亮点: 1. **即点即分割**:用户添加提示点后实时生成结果 2. **轻量级部署**:推理时间<50ms(RTX 3060) 3. **小样本适应**:点提示机制提升小数据集表现 典型应用场景: - 病理切片病灶标注 - 放射影像器官分割 - 超声图像关键结构提取

2025-08-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除