Java描述 LeetCode,53. Maximum Subarray,最大连续子数组之和

本文探讨了如何通过动态规划解决LeetCode上的最大子数组和问题,介绍了两种方法:标准DP和贪心策略。同时提及了使用分治法的挑战和总结。适合对算法优化感兴趣的开发者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是河海哥,专注于后端,如果可以的话,想做一名code designer而不是普通的coder,一起见证河海哥的成长,您的评论与赞是我的最大动力。

1-1:题目

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

A subarray is a contiguous part of an array.

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Example 2:

Input: nums = [1]
Output: 1

Example 3:

Input: nums = [5,4,-1,7,8]
Output: 23

Constraints:

1 <= nums.length <= 105
-104 <= nums[i] <= 104

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray

1-2:动态规划

1-2-1:idea

这道题是简单题,我用dp解决了这个问题。我们可以用列表(就是手动模拟过程,填dp数组的值)的方式来对这个问题进行分析,首先dp状态dp[i]代表以nums[i]结尾的连续子数组的最大和为dp[i]。那么这个递推关系怎么来?我们在列表的时候,不难发现,如果dp[i-1]>=0的时候(dp[i-1]也就是子问题nums[0:i-1]这个数组的连续子数组最大和),才对当前dp[i]有益处,你可以想一下,如果小于0,我加上之后我自己反而变小了,肯定不如做自己了呀。注意,这里的nums[i]这个数字是必选的,我们只需要考虑子问题的最优解+自己nums[i] 是否能让这个和变大。所以递推式我们就可以写出来了。

  • dp[i-1] >=0:dp[i] = dp[i-1] + nums[i]
  • dp[i-1]<0:dp[i] = nums[i]

或者,对于dp[i],有两种选择,可以选择做自己,也可以选择继承子问题的最优解,取最大值就好了也就是dp[i] = Math.max(dp[i-1] + nums[i], nums[i])

1-2-2:代码

public static int maxSubArray(int[] nums) {
    int n = nums.length;

    int[] dp = new int[n]; // 0~n-1
    dp[0] = nums[0];
    int max = dp[0];
    for (int i = 1; i < n; i++) {
        if (dp[i - 1] >= 0) {
            dp[i] = dp[i - 1] + nums[i];
        } else {
            dp[i] = nums[i];
        }
        max = Math.max(max, dp[i]);
    }
    return max;
}

代码可以用滚动数组的思想进行优化,应该比较简单,因为dp[i]只依赖于dp[i-1],可以空间复杂度。

1-3:贪心:2021-11-22更

1-3-1:idea

贪心算法:主要有两个贪心的地方:

  • 根据上面的dp解法,我们可以知道,当前面的子数组是负数的时候,我们就应该放弃他们,因为不放弃他们,加上一个新值就会让这个新值去填旧子数组,不就浪费了这个新值嘛,所以果断放弃,让它去找其他小伙伴玩。
  • 题目要求连续子数组的和要最大,那么只要子数组的和不是负数,不是负数对后面的数字就是增益效果,就可以多给后面的数字机会啦!万一有一个大哥1000000一下子能带起小弟们呢?所以只要前面的子数组和不是负数就可以一直往后加了。只需要在这个过程中记录最大的那个值就可以了,是呀,万一后面小弟多起来,拖大了呢。

1-3-2:代码

自己写的

public static int maxSubArray(int[] nums) {
    int n = nums.length;

    int max = nums[0];
    int pre = nums[0];
    for (int i = 1; i < n; i++) { // 从1开始遍历的
        if (pre < 0) {
            pre = nums[i];
        } else {
            pre += nums[i];
        }
        max = Math.max(max, pre);
    }
    return max;
}

答案

public static int maxSubArray2(int[] nums) {
    int n = nums.length;

    int pre = 0;
    int max = Integer.MIN_VALUE; // 从0开始遍历,所以要设置一个最小值在这
    for (int num : nums) {
        pre += num;
        max = Math.max(pre, max);
        if (pre < 0) {
            pre = 0;
        }
    }
    return max;
}

1-4:分治法,类线段树另解

在这里插入图片描述
补上自己的一张图:
在这里插入图片描述

1-5:总结

这道题应该是简单的,我可算又能AC出一道了。由于我先攻的dp,分治法我还不会,所以暂时先搁置吧。继续加油啊!河海哥,冲!如果错误,还请指证,谢谢大家~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

河海哥yyds

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值