基于torch_dispatch机制生成Megatron-DeepSpeed调用关系图
想知道Megatron-DeepSpeed训练过程中各模块之间的调用关系。torch_dispatch机制可以拦截算子,inspect又能获取到调用栈(文件,类名,函数,行号).基于这些信息可以生成调用关系,最后用graphviz生成SVG图像。该思路也可以用来画其它pytorch工程的调用关系图
1.为了减少图像宽度,一行显示一级文件路径
2.没有显示具体的ATen算子。因为边太乱
一.局部效果图
二.运行训练过程,拦截算子,生成调用关系信息
# 前面构建模型的代码省略
from torch.utils._python_dispatch import TorchDispatchMode
import inspect
from dataclasses import dataclass
from typing import Any
import pickle
@dataclass
class _ProfilerState:
cls: Any
object: Any = None
class TorchDumpDispatchMode(TorchDispatchMode):
def __init__(self,parent):
super().__init__()
self.parent=parent
self.global_index=0
self.nodes=set()
self.edges=set()
def __del__(self):
self.rank = torch.distributed.get_rank()
graph={"nodes":self.nodes,"edges":self.edges}
with open(f"call_graph_{self.rank}.pkl","wb") as f:
pickle.dump(graph,f)
def is_keep(self,node):
# if node.function.find("wrapper")>=0:
# return False
# if node.function.find("_call_impl")>=0:
# return False
return True
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
self.global_index+=1
self.rank = torch.distributed.get_rank()
func_packet = func._overloadpacket
if kwargs is None:
kwargs = {}
if self.rank==0:
stacks=[i for i in inspect.stack() if self.is_keep(i)]
stacks_sz=len(stacks)
for idx in range(stacks_sz-1,1,-1):
if "self" in stacks[idx].frame.f_locals:
class_name = stacks[idx].frame.f_locals["self"].__class__.__name__
else:
class_name=""
this_node=f"{stacks[idx].filename}:[{class_name}]:{stacks[idx].function}"
if "self" in stacks[idx-1].frame.f_locals:
class_name = stacks[idx-1].frame.f_locals["self"].__class__.__name__
else:
class_name=""
next_node=f"{stacks[idx-1].filename}:[{class_name}]:{stacks[idx-1].function}"
self.nodes.add(this_node)
self.nodes.add(next_node)
self.edges.add(f"{this_node}->{next_node}")
# if stacks_sz>1:
# if "self" in stacks[1].frame.f_locals:
# class_name = stacks[1].frame.f_locals["self"].__class__.__name__
# else:
# class_name=""
# this_node=f"{stacks[1].filename}:[{class_name}]:{stacks[1].function}"
# next_node=f"{func_packet.__name__}"
# self.nodes.add(this_node)
# self.nodes.add(next_node)
# self.edges.add(f"{this_node}->{next_node}")
ret= func(*args, **kwargs)
return ret
class TorchDumper:
_CURRENT_Dumper = None
def __init__(self,schedule: Any):
self.p= _ProfilerState(schedule)
def __enter__(self):
assert TorchDumper._CURRENT_Dumper is None
TorchDumper._CURRENT_Dumper = self
if self.p.object is None:
o = self.p.cls(self)
o.__enter__()
self.p.object = o
else:
self.p.object.step()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
TorchDumper._CURRENT_Dumper = None
if self.p.object is not None:
self.p.object.__exit__(exc_type, exc_val, exc_tb)
del self.p.object #序列化保存
def main():
with TorchDumper(TorchDumpDispatchMode):
#训练入口
pretrain(
train_valid_test_datasets_provider,
model_provider,
forward_step,
extra_args_provider=llama_argument_handler,
args_defaults={"tokenizer_type": "GPT2BPETokenizer"},
)
if __name__ == "__main__":
main()
三.可视化,生成SVG图像
# coding=utf-8
import os
from graphviz import Digraph,Graph
import pickle
import random
from distinctipy import distinctipy
def generate_colors(N):
'''
生成N种有区别度的颜色
'''
result=[]
for red, green, blue in distinctipy.get_colors(N):
result.append("#{:02X}{:02X}{:02X}".format(int(red*255), int(green*255), int(blue*255)))
return result
def replace_name(name):
'''
修改节点名字(缩短,添加换行)
'''
if name.find("__torch_dispatch__")>=0:
return None
name=name.replace("/home/user/Megatron-DeepSpeed/","")
name=name.replace("/home/anaconda3/envs/dev/lib/python3.10/site-packages/","")
name=name.replace("/home/user/deepspeed/","")
name=name.replace("/home/anaconda3/envs/dev/","")
name=name.replace("/",r"\n")
name=name.replace(":",r"\n")
return name
# 1.加载HOOK生成的调用关系文件
rank=0
with open(f"call_graph_{rank}.pkl","rb") as f:
data=pickle.load(f)
# 2.构建图,设置属性
dot = Digraph()
dot.node_attr = {"shape": "plaintext"}
dot.attr('graph', layout='dot')
dot.graph_attr.update(sep='4.0', ratio='compress')
node_desc_id_map={} #节点名与描述的关系映射表
src_node_color={} #节点颜色映射表(同一个节点输出的边颜色一样)
colors = generate_colors(10)
colors_sz=len(colors)
fontsize="16" #节点字体大小
penwidth="2.0" #边宽度
# 3.添加节点
for idx,v in enumerate(data["nodes"]):
v=replace_name(v)
if v is None:
continue
node_desc_id_map[v]=f"{idx}"
if v.find("megatron")>=0:
dot.node(f"{idx}",v,style='filled',color='#73FBFD',fontsize=fontsize)
elif v.find("deepspeed")>=0:
dot.node(f"{idx}",v,style='filled',color='#FA8D89',fontsize=fontsize)
else:
dot.node(f"{idx}",v,style='filled',color='#C0C0C0',fontsize=fontsize)
src_node_color[v]=colors[idx%colors_sz]
# 4.添加边
for edge in data["edges"]:
from_node,to_node=edge.split("->")
from_node=replace_name(from_node)
to_node=replace_name(to_node)
if all([from_node,to_node]):
color=src_node_color[from_node]
dot.edge(node_desc_id_map[from_node], node_desc_id_map[to_node],color=color,penwidth=penwidth)
# 5.保存SVG
save_path='megatron_deepspeed_callgraph'
dot.render(save_path,format='svg', view=False)
# 6.修改背景色为灰色
import xml.etree.ElementTree as ET
svg_tree = ET.parse(f'{save_path}.svg')
root = svg_tree.getroot()
element = root.find(".//{http://www.w3.org/2000/svg}polygon")
element.set('fill', 'gray')
svg_tree.write(f'{save_path}.svg')