不同版本sycl编译器测试

1.测试程序

cat > sycl_test.cpp <<-'EOF'
#include <sycl/sycl.hpp>
#include <chrono>
#include <iostream>
#include <vector>
#include <sys/time.h>
#include <nvtx3/nvToolsExt.h>

class ReluKernel {
 public:
  ReluKernel(sycl::buffer<float, 1>& input, sycl::buffer<float, 1>& output)
      : input_(input), output_(output) {}

  void operator()(sycl::handler& h) {
    auto in_acc = input_.get_access<sycl::access::mode::read>(h);
    auto out_acc = output_.get_access<sycl::access::mode::write>(h);
    h.parallel_for(sycl::range<1>{in_acc.size()}, [=](sycl::id<1> idx) {
      float x = in_acc[idx];
      out_acc[idx] = x > 0 ? x : 0;
    });
  }

 private:
  sycl::buffer<float, 1>& input_;
  sycl::buffer<float, 1>& output_;
};

int main() {
	bool flag = true;
	auto data_size = 200*1024;
	std::vector<float> input_data(data_size, 1.0f);
	std::vector<float> output_data(data_size, 0.0f);
	for (int j = 0; j < input_data.size(); j++) {
	  input_data[j] = j % 2 == 0 ? 1.0f : -1.0f;
	}
	sycl::gpu_selector selector;
	sycl::queue queue(selector,sycl::property::queue::enable_profiling());
	sycl::buffer<float, 1> input_buf(input_data.data(),
								   sycl::range<1>(input_data.size()));
	sycl::buffer<float, 1> output_buf(output_data.data(),
									sycl::range<1>(output_data.size()));
	for (int times = 0; times < 10; times++) 
	{
	  nvtxRangePush("kernel in");
	  struct timeval start_time, end_time;
	  gettimeofday(&start_time, nullptr);	  
	  sycl::event kernel_event = queue.submit([&](sycl::handler& h) {
			ReluKernel kernel(input_buf, output_buf);
			kernel(h);
		  });
	  queue.wait_and_throw();
	  gettimeofday(&end_time, nullptr);
	  double e2e_time = ((end_time.tv_sec - start_time.tv_sec) * 1e6 \
							+ (end_time.tv_usec - start_time.tv_usec)) / 1000.0;	  
	  auto submit_ns =
		  kernel_event
			  .get_profiling_info<sycl::info::event_profiling::command_submit>();
	  auto start_ns =
		  kernel_event
			  .get_profiling_info<sycl::info::event_profiling::command_start>();
	  auto end_ns =
		  kernel_event
			  .get_profiling_info<sycl::info::event_profiling::command_end>();
	  double duration_ms = (end_ns - start_ns)/1e6;
	  double submit_ms = (start_ns-submit_ns)/1e6 ;
	  nvtxRangePop();
	  printf("%8.4f  %8.4f %8.4f\n",submit_ms,duration_ms,e2e_time);
	}
	return 0;
}
EOF

2.分别编译二个版本的开源sycl编译器

git clone https://github.com/intel/llvm -b sycl
cd llvm
git checkout 1c35af3dc19be511ddeb0d984f1fddc737d24592
git submodule update --recursive
python buildbot/configure.py --cuda -t Release
python buildbot/compile.py
mv build ../build_2025

git checkout 123705190ed5f971750a77da9e69ae7ff35ad243
git submodule update --recursive

# 修改点参考:https://github.com/KhronosGroup/OpenCL-Headers/issues/266
python buildbot/configure.py --cuda -t Release
python buildbot/compile.py
mv build ../build_2024

3.用2025年的开源sycl测试

export PATH=$PWD/build_2025/bin:$PATH
export LD_LIBRARY_PATH=$PWD/build_2025/lib:$LD_LIBRARY_PATH
clang++ -std=c++17 -O3 -fsycl -fsycl-targets=nvptx64-nvidia-cuda sycl_test.cpp -o sycl_test
export SYCL_CACHE_IN_MEM=1
./sycl_test
export SYCL_CACHE_IN_MEM=0
./sycl_test
export SYCL_CACHE_IN_MEM=1
nsys profile --stats=true -o sycl_test_open_2025.nsys-rep -f true -t cuda,nvtx ./sycl_test

输出

# SYCL_CACHE_IN_MEM=1
0.9001    0.0215   1.0780
0.0249    0.0082   0.0470
0.0229    0.0072   0.0420
0.0394    0.0072   0.0600
0.0249    0.0072   0.0410
0.0204    0.0072   0.0400
0.1497    0.0082   0.1730
0.0258    0.0080   0.0480
0.0248    0.0082   0.0450
0.0222    0.0072   0.0470
# SYCL_CACHE_IN_MEM=0
0.8991    0.0174   1.0920
0.1843    0.0594   0.2770
0.1866    0.0082   0.2250
0.1793    0.0082   0.2160
0.1795    0.0083   0.2160
0.1794    0.0082   0.2150
0.2979    0.0092   0.3380
0.2065    0.0082   0.2440
0.1698    0.0082   0.2100
0.1626    0.0082   0.2040

在这里插入图片描述

4.用2024年的开源sycl测试

export PATH=$PWD/build_2024/bin:$PATH
export LD_LIBRARY_PATH=$PWD/build_2024/lib:$LD_LIBRARY_PATH
clang++ -std=c++17 -O3 -fsycl -fsycl-targets=nvptx64-nvidia-cuda sycl_test.cpp -o sycl_test
export SYCL_CACHE_IN_MEM=1
./sycl_test
export SYCL_CACHE_IN_MEM=0
./sycl_test

输出

# SYCL_CACHE_IN_MEM=1
0.8847    0.0215   1.0580
0.0250    0.0092   0.0480
0.0381    0.0072   0.0540
0.0408    0.0072   0.0600
0.0249    0.0061   0.0390
0.0206    0.0071   0.0410
0.0204    0.0072   0.0390
0.1498    0.0082   0.1690
0.0274    0.0072   0.0540
0.0294    0.0072   0.0490
# SYCL_CACHE_IN_MEM=0
0.8602    0.0215   1.0680
0.2120    0.0092   0.2510
0.1731    0.0082   0.2100
0.1667    0.0082   0.2020
0.1664    0.0082   0.2010
0.1871    0.0082   0.2220
0.1554    0.0082   0.1900
0.2707    0.0082   0.3080
0.1689    0.0082   0.2070
0.1523    0.0092   0.1920

5.intel-dpcpp-cpp-compiler-2025.0.4.20

rm /opt/intel -rf
bash intel-dpcpp-cpp-compiler-2025.0.4.20_offline.sh
bash oneapi-for-nvidia-gpus-2025.0.0-cuda-12.0-linux.sh
source /opt/intel/oneapi/setvars.sh --force

icpx --version
icpx sycl_test.cpp -o sycl_test -fsycl -fPIC -fsycl-targets=nvptx64-nvidia-cuda -O3
export SYCL_CACHE_IN_MEM=1
./sycl_test
export SYCL_CACHE_IN_MEM=0
./sycl_test

输出

# SYCL_CACHE_IN_MEM=1
1.3005    0.0215   1.4700
0.0242    0.0080   0.0450
0.0227    0.0071   0.0580
0.0212    0.0072   0.0480
0.0241    0.0215   0.0560
0.0253    0.0072   0.0390
0.1562    0.0082   0.1760
0.0247    0.0072   0.0450
0.0260    0.0072   0.0470
0.0222    0.0072   0.0420
# SYCL_CACHE_IN_MEM=0
0.8253    0.0174   0.9950
0.2120    0.0246   0.2670
0.1794    0.0081   0.2150
0.1763    0.0082   0.2110
0.1755    0.0091   0.2110
0.1653    0.0082   0.1990
0.3252    0.0236   0.3760
0.2154    0.0083   0.2660
0.1617    0.0092   0.2000
0.1623    0.0082   0.2010

6.intel-dpcpp-cpp-compiler-2024.1.0.468

rm /opt/intel -rf
bash intel_dpcpp-cpp-compiler_p_2024.1.0.468_offline.sh
bash oneapi-for-nvidia-gpus-2024.1.0-cuda-12.0-linux.sh
source /opt/intel/oneapi/compiler/latest/env/vars.sh
icpx --version
icpx sycl_test.cpp -o sycl_test -fsycl -fPIC -fsycl-targets=nvptx64-nvidia-cuda -O3
export SYCL_CACHE_IN_MEM=1
./sycl_test
export SYCL_CACHE_IN_MEM=0
./sycl_test

export SYCL_CACHE_IN_MEM=1
nsys profile --stats=true -o sycl_test_open_dpcpp2024.nsys-rep -f true -t cuda,nvtx ./sycl_test

输出

# SYCL_CACHE_IN_MEM=1
0.8530    0.0225   1.0080
0.0157    0.0081   0.0440
0.0138    0.0063   0.0360
0.0128    0.0072   0.0390
0.0124    0.0072   0.0380
0.0158    0.0072   0.0400
0.0151    0.0061   0.0350
0.1356    0.0092   0.1630
0.0139    0.0082   0.0560
0.0150    0.0072   0.0410
# SYCL_CACHE_IN_MEM=0
0.8305    0.0215   0.9970
0.1721    0.0092   0.2170
0.1605    0.0082   0.2020
0.1524    0.0092   0.1930
0.1467    0.0082   0.1870
0.1416    0.0082   0.1820
0.1334    0.0082   0.1720
0.2445    0.0092   0.2870
0.1525    0.0092   0.1970
0.1378    0.0092   0.1830

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi20240217

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值