移植driver_monitoring_system里的MobileNet到RK3588

根据下面的内容写一篇技术博客,要求增加更多的解释,让普通读者也能了解为什么这样做,具体怎么做

一、背景

  • driver_monitoring_system 是一个旨在监控驾驶员状态和行为的项目,例如打哈欠、打电话
  • MobileNet用来预测驾驶员的行为(电话、短信) 该模型基于tensorflow
  • 本文介绍如果将该模型移植到RK3588
  • 手机检测模型参考:在RK3588上实现YOLOv8n高效推理

二、操作步骤

2.1 下载源码

git clone https://github.com/jhan15/driver_monitoring.git
cd driver_monitoring

2.2 Tensorflow转成ONNX

2.2.1 在x86上创建容器,安装依赖
docker run -it --privileged --net=host \
    -v $PWD:/home -w /home --rm  nvcr.io/nvidia/pytorch:22.02-py3 /bin/bash

pip install tf-estimator-nightly==2.8.0.dev2021122109
pip install tensorflow==2.8.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install tf2onnx onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simple
2.2.2 保存为saved-model
cat > cvt.py <<-'EOF'
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers.experimental.preprocessing import Rescaling
from tensorflow.keras.layers import RandomRotation, RandomZoom, Dense, Dropout,\
    BatchNormalization, GlobalAveragePooling2D
from tensorflow.keras.optimizers import Adam
from tf2onnx import convert
from net import MobileNet
from PIL import Image
import tensorflow as tf
import numpy as np

class MobileNet(Sequential):   
    def __init__(self, input_shape=(224,224,3), num_classes=2, dropout=0.25, lr=1e-3,
                 augmentation=False, train_base=False, add_layer=False):
        super().__init__()

        self.base_model = tf.keras.applications.MobileNetV2(
            weights='imagenet',
            input_shape=input_shape,
            include_top=False)
        self.base_model.trainable = train_base        
        self.add(self.base_model)
        self.add(GlobalAveragePooling2D())
        self.add(Dropout(dropout))        
        if add_layer:
            self.add(Dense(256, activation='relu'))
            self.add(Dropout(dropout))        
        self.add(Dense(num_classes, activation='softmax'))        
        self.compile(optimizer=Adam(learning_rate=lr),
                     loss='sparse_categorical_crossentropy',metrics=["accuracy"])

model = MobileNet()
model.load_weights('models/model_split.h5')

rgb_image = Image.open("0.jpg")
rgb_image = np.array(rgb_image.resize((224,224))).astype(np.float32)
rgb_image = (tf.expand_dims(rgb_image, 0)-127.5)/127.5
print(rgb_image.shape)
y = model.predict(rgb_image)
print(model.input)
print(model.output)
print(y.shape,y.reshape(-1)[:8])
result = np.argmax(y, axis=1)
print(result.shape)
model.save("keras_model")
EOF
rm -rf keras_model
python3 cvt.py
2.2.3 saved-model转ONNX
python -m tf2onnx.convert --inputs-as-nchw mobilenetv2_1_00_224_input:0 \
        --inputs mobilenetv2_1_00_224_input:0[1,224,224,3] \
        --saved-model keras_model --output model.onnx
rm keras_model -rf
2.2.4 ONNX推理
cat > onnx_forward.py <<-'EOF'
import onnxruntime as ort
import numpy as np
import sys
from PIL import Image

model_path = "model.onnx"
session = ort.InferenceSession(model_path)
inputs_info = session.get_inputs()
outputs_info = session.get_outputs()

rgb_image = Image.open("0.jpg")
rgb_image = np.array(rgb_image.resize((224,224)))
rgb_image = rgb_image[np.newaxis, :].transpose(0, 3, 1, 2)
rgb_image = (rgb_image.astype(np.float32)-127.5)/127.5

input_data = {}
input_data['mobilenetv2_1_00_224_input:0']=rgb_image
outputs = session.run(None, input_data)

for i, output_info in enumerate(outputs_info):
    output_name = output_info.name
    print(outputs[i])
EOF
python3 onnx_forward.py

2.3 ONNX转RKNN

cat > onnx2rknn.py <<-'EOF'
import os
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN
from math import exp
import cv2
import numpy as np

ONNX_MODEL = 'model.onnx'
RKNN_MODEL = 'model.rknn'
is_quant=1

rknn = RKNN(verbose=True)
rknn.config(mean_values=[[127.5, 127.5, 127.5]], 
			std_values=[[127.5, 127.5, 127.5]], 
			target_platform='rk3588')
ret = rknn.load_onnx(model=ONNX_MODEL)
if ret != 0:
    print('Load model failed!')
    exit(ret)
ret = rknn.build(do_quantization=is_quant, dataset='./dataset.txt',auto_hybrid=True)
if ret != 0:
    print('Build model failed!')
    exit(ret)
ret = rknn.export_rknn(RKNN_MODEL)
if ret != 0:
    print('Export rknn model failed!')
    exit(ret)
rknn.release()
EOF
echo "0.jpg" > ./dataset.txt
python3 onnx2rknn.py

2.4 RKNN推理

cat > rknn_forward.py <<-'EOF'
import time
import numpy as np
from rknnlite.api import RKNNLite
from PIL import Image
import numpy as np

rgb_image = Image.open("0.jpg")
rgb_image = np.array(rgb_image.resize((224,224)))
rgb_image = rgb_image[np.newaxis, :]

rknn_lite = RKNNLite()
ret = rknn_lite.load_rknn('model.rknn')
if ret != 0:
    print('Load RKNN model failed')
    exit(ret)
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO)
if ret != 0:
    print('Init runtime environment failed')
    exit(ret)
outputs = rknn_lite.inference(inputs=[rgb_image],data_format=['nhwc'])
print(outputs)
EOF
python3 rknn_forward.py
内容概要:本文档主要展示了C语言中关于字符串处理、指针操作以及动态内存分配的相关代码示例。首先介绍了如何实现键值对(“key=value”)字符串的解析,包括去除多余空格和根据键获取对应值的功能,并提供了相应的测试用例。接着演示了从给定字符串中分离出奇偶位置字符的方法,并将结果分别存储到两个不同的缓冲区中。此外,还探讨了常量(const)修饰符在变量和指针中的应用规则,解释了不同类型指针的区别及其使用场景。最后,详细讲解了如何动态分配二维字符数组,并实现了对这类数组的排序与释放操作。 适合人群:具有C语言基础的程序员或计算机科学相关专业的学生,尤其是那些希望深入理解字符串处理、指针操作以及动态内存管理机制的学习者。 使用场景及目标:①掌握如何高效地解析键值对字符串并去除其中的空白字符;②学会编写能够正确处理奇偶索引字符的函数;③理解const修饰符的作用范围及其对程序逻辑的影响;④熟悉动态分配二维字符数组的技术,并能对其进行有效的排序和清理。 阅读建议:由于本资源涉及较多底层概念和技术细节,建议读者先复习C语言基础知识,特别是指针和内存管理部分。在学习过程中,可以尝试动手编写类似的代码片段,以便更好地理解和掌握文中所介绍的各种技巧。同时,注意观察代码注释,它们对于理解复杂逻辑非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi20240217

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值