NLP神经网络模型训练时,不同batch可以padding到不同长度嘛?

在自然语言处理(NLP)中,同一个batch内的序列通常需要padding到相同长度以便进行矩阵运算。然而,不同batch之间的序列长度可以不同。这是因为模型如RNN/LSTM和Transformer的参数与序列长度无关。RNN/LSTM的循环计算不受seq_length影响,而Transformer的Self-Attention和Feed Forward Network也独立于seq_length,允许不同batch有不同的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

同一个batch内要padding到一样长度,不同batch之间可以不一样

这一点,对于 (绝大多数) NLP模型都是这样的

同一个batch内要padding到一样长度

神经网络,内部大都是矩阵的运算,batch训练,需要矩阵输入

因此一个batch要padding到一样的长度,才能形成一个矩阵,像

[[1,2],
 [3,4,5]]

它并不是一个矩阵,矩阵需要每个维度的长度一样才行

不同batch之间可以不一样

一般batch个句子经过embedding层之后,它的维度会变成 [batch_size, seq_length, embedding_size],

不同batch之间padding的长度可以不一样,是因为神经网络模型的参数与 seq_length 这个维度并不相关。

下面从两个常见的模型 RNN / Transformer 去细致的解释这个问题:

RNN/LSTM

如对于RNN/LSTM 等循环神经网络,seq_length 这个维度只决定 RNN/LSTM 循环计算多少步,而不会影响模型的参数,如下图:

在这里插入图片描述

所以你可能会发现,Pytorch中的 RNN/LSTM 默认是 [seq_length, batch_size, embedding_size] 形式的输入,和常见的 [batch_size, seq_length, embedding_size] 的数据维度形式不一样,因为 RNN/LSTM 每一步处理的其实是 [batch_size, embedding_size] 的数据,然后循环处理 seq_length 次。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海晨威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值