写文章有段时间了,但内容比较杂,想到啥写啥。
这次文章就做一个归类总结,方便小伙伴系统的看这些内容。
自然语言处理
BERT/Transformer细节: 在基本了解BERT和Transformer的基础上,以下的文章能够帮助你更深入地理解它们的细节
史上最细节的自然语言处理NLP/Transformer/BERT/Attention面试问题与答案
为什么 Bert 的三个 Embedding 可以进行相加?
transformer中multi-head attention中每个head为什么要进行降维?
bert最后输出的字表示是使用固定的分类层进行分类的,为什么能区分一字多义?
NLP中的常见操作:包括 Attention,Mask,变长序列的padding,Embedding等,都是NLP中的常见操作,能够帮助你更好的理解和训练你的模型