海晨威文章内容总结

本文是对海晨威所写文章的综合梳理,主要涵盖自然语言处理的BERT/Transformer深入解析,包括NLP面试问题、Attention、Mask处理等;深度学习中的BatchNorm、LayerNorm等Norm知识点,LSTM结构详解;强化学习的基本概念和入门指导;以及一些个人杂文和感悟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写文章有段时间了,但内容比较杂,想到啥写啥。

这次文章就做一个归类总结,方便小伙伴系统的看这些内容。

自然语言处理

BERT/Transformer细节: 在基本了解BERT和Transformer的基础上,以下的文章能够帮助你更深入地理解它们的细节

超细节的BERT/Transformer知识点

史上最细节的自然语言处理NLP/Transformer/BERT/Attention面试问题与答案

为什么 Bert 的三个 Embedding 可以进行相加?

transformer中multi-head attention中每个head为什么要进行降维?

bert最后输出的字表示是使用固定的分类层进行分类的,为什么能区分一字多义?

NLP中的常见操作:包括 Attention,Mask,变长序列的padding,Embedding等,都是NLP中的常见操作,能够帮助你更好的理解和训练你的模型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海晨威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值