python实现统一形式的二叉树前中后序非递归遍历

本文深入探讨了二叉树的遍历方法,包括递归和非递归形式的前序、中序和后序遍历。通过对比,阐述了不同遍历方式的特点和实现原理,特别是非递归后序遍历的特殊处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于二叉树的遍历,递归形式非常简单,可以很快写出来,而对于非递归的形式,在不熟的情况下,还是需要一番思考的,因为二叉树的非递归遍历并没有一个统一的形式方便理解和记忆,对于前序和中序非递归遍历,还算统一,而一般的非递归后序遍历,和前两者有很大的差异。

参考python实现二叉树和它的七种遍历,给出一般形式的非递归前中后序遍历:

一般形式的非递归前中后序遍历
	def front_stack(self, root):
        """利用堆栈实现树的先序遍历"""
        if root == None:
            return
        myStack = []
        node = root
        while node or myStack:
            while node:                     #从根节点开始,一直找它的左子树
                print (node.elem)
                myStack.append(node)
                node = node.lchild
            node = myStack.pop()            #while结束表示当前节点node为空
            node = node.rchild                  #开始查看它的右子树


    def middle_stack(self, root):
        """利用堆栈实现树的中序遍历"""
        myStack = []
        node = root
        while node or myStack:
            while node:                     #从根节点开始,一直找它的左子树
                myStack.append(node)
                node = node.lchild
            node = myStack.pop()            #while结束表示当前节点node为空
            print (node.elem)
            node = node.rchild                  #开始查看它的右子树


    def later_stack(self, root):
        """利用堆栈实现树的后序遍历"""
        if root == None:
            return
        myStack1 = []
        myStack2 = []
        node = root
        myStack1.append(node)
        while myStack1:             #这个while循环的功能是找出后序遍历的逆序,存在myStack2里面
            node = myStack1.pop()
            if node.lchild:
                myStack1.append(node.lchild)
            if node.rchild:
                myStack1.append(node.rchild)
            myStack2.append(node)
        while myStack2:                         #将myStack2中的元素出栈,即为后序遍历次序
            print(myStack2.pop().elem)
非递归后序遍历不同的原因

从代码中可以看出,前中序非递归遍历较为相似,只有节点访问的位置不一样,但也有差别,前者是在入栈前访问,后者是出栈后访问。

而后序遍历就大不一样了,它不能和上面的前中序一样,是因为它需要访问完右子树之后才访问当前节点,而在上面前序和中序里的栈,在访问右子树之前已经把当前节点pop出去了,不可能再访问到当前节点,因此不能简单像下面的递归版本一样把节点访问放在最后就可以了。

def later_recursive(self, root):
        """利用递归实现树的后序遍历"""
        if root == None:
            return
        self.later_digui(root.lchild)
        self.later_digui(root.rchild)
        print (root.elem)

上面的递归后序遍历中,因为在当前访问节点下,root一直被保存,不受访问左右子树的影响,因此,当前节点的访问直接放在最后即可。

统一形式的非递归前中后序遍历

下面给出一种统一形式的二叉树非递归遍历,它和递归版的一样,只要更改一行代码的位置即可。

但它的时间复杂度相较上面的方法会更高一些,因为它需要对节点进行两次遍历,第一次并不访问,第二次再访问,因此需要一个记录访问次数的flag,在空间复杂度上也会更大,但它统一的形式能更好的理解。

class Node(object):
    """节点类"""
    def __init__(self, elem=-1, lchild=None, rchild=None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild


class Tree(object):
    """树类"""
    def __init__(self):
        self.root = Node()
        self.myQueue = []

    def add(self, elem):
        """为树添加节点,生成完全二叉树"""
        node = Node(elem)
        if self.root.elem == -1:  # 如果树是空的,则对根节点赋值
            self.root = node
            self.myQueue.append(self.root)
        else:
            treeNode = self.myQueue[0]  # 此结点的子树还没有齐。
            if treeNode.lchild == None:
                treeNode.lchild = node
                self.myQueue.append(treeNode.lchild)
            else:
                treeNode.rchild = node
                self.myQueue.append(treeNode.rchild)
                self.myQueue.pop(0)  # 如果该结点存在右子树,将此结点丢弃。

    def front_recursive(self, root):
        """利用递归实现树的先序遍历"""
        if root == None:
            return
        print (root.elem)
        self.front_recursive(root.lchild)
        self.front_recursive(root.rchild)

    def middle_recursive(self, root):
        """利用递归实现树的中序遍历"""
        if root == None:
            return
        self.middle_recursive(root.lchild)
        print (root.elem)
        self.middle_recursive(root.rchild)

    def later_recursive(self, root):
        """利用递归实现树的后序遍历"""
        if root == None:
            return
        self.later_recursive(root.lchild)
        self.later_recursive(root.rchild)
        print (root.elem)

    def front_loop(self,root):
        """利用循环实现树的前序遍历"""
        stack = []
        stack.append((root,0))
        while stack:
            node, isVisit = stack.pop()
            if not node: continue
            if isVisit:
                print (node.elem)
            else:
                stack.append((node.rchild, 0))
                stack.append((node.lchild, 0))
                stack.append((node, 1))

    def middel_loop(self,root):
        """利用循环实现树的中序遍历"""
        stack = []
        stack.append((root,0))
        while stack:
            node, isVisit = stack.pop()
            if not node: continue
            if isVisit:
                print (node.elem)
            else:
                stack.append((node.rchild, 0))
                stack.append((node, 1))
                stack.append((node.lchild, 0))

    def later_loop(self,root):
        """利用循环实现树的后序遍历"""
        stack = []
        stack.append((root,0))
        while stack:
            node, isVisit = stack.pop()
            if not node: continue
            if isVisit:
                print (node.elem)
            else:
                stack.append((node, 1))
                stack.append((node.rchild, 0))
                stack.append((node.lchild, 0))

if __name__ == '__main__':
    """主函数"""
    elems = range(10)           #生成十个数据作为树节点
    tree = Tree()               #新建一个树对象
    for elem in elems:
        tree.add(elem)          #逐个添加树的节点, 生成完全二叉树

    tree.front_recursive(tree.root)
    tree.front_loop(tree.root)

参考:更简单的非递归遍历二叉树的方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海晨威

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值