对于二叉树的遍历,递归形式非常简单,可以很快写出来,而对于非递归的形式,在不熟的情况下,还是需要一番思考的,因为二叉树的非递归遍历并没有一个统一的形式方便理解和记忆,对于前序和中序非递归遍历,还算统一,而一般的非递归后序遍历,和前两者有很大的差异。
参考python实现二叉树和它的七种遍历,给出一般形式的非递归前中后序遍历:
一般形式的非递归前中后序遍历
def front_stack(self, root):
"""利用堆栈实现树的先序遍历"""
if root == None:
return
myStack = []
node = root
while node or myStack:
while node: #从根节点开始,一直找它的左子树
print (node.elem)
myStack.append(node)
node = node.lchild
node = myStack.pop() #while结束表示当前节点node为空
node = node.rchild #开始查看它的右子树
def middle_stack(self, root):
"""利用堆栈实现树的中序遍历"""
myStack = []
node = root
while node or myStack:
while node: #从根节点开始,一直找它的左子树
myStack.append(node)
node = node.lchild
node = myStack.pop() #while结束表示当前节点node为空
print (node.elem)
node = node.rchild #开始查看它的右子树
def later_stack(self, root):
"""利用堆栈实现树的后序遍历"""
if root == None:
return
myStack1 = []
myStack2 = []
node = root
myStack1.append(node)
while myStack1: #这个while循环的功能是找出后序遍历的逆序,存在myStack2里面
node = myStack1.pop()
if node.lchild:
myStack1.append(node.lchild)
if node.rchild:
myStack1.append(node.rchild)
myStack2.append(node)
while myStack2: #将myStack2中的元素出栈,即为后序遍历次序
print(myStack2.pop().elem)
非递归后序遍历不同的原因
从代码中可以看出,前中序非递归遍历较为相似,只有节点访问的位置不一样,但也有差别,前者是在入栈前访问,后者是出栈后访问。
而后序遍历就大不一样了,它不能和上面的前中序一样,是因为它需要访问完右子树之后才访问当前节点,而在上面前序和中序里的栈,在访问右子树之前已经把当前节点pop出去了,不可能再访问到当前节点,因此不能简单像下面的递归版本一样把节点访问放在最后就可以了。
def later_recursive(self, root):
"""利用递归实现树的后序遍历"""
if root == None:
return
self.later_digui(root.lchild)
self.later_digui(root.rchild)
print (root.elem)
上面的递归后序遍历中,因为在当前访问节点下,root一直被保存,不受访问左右子树的影响,因此,当前节点的访问直接放在最后即可。
统一形式的非递归前中后序遍历
下面给出一种统一形式的二叉树非递归遍历,它和递归版的一样,只要更改一行代码的位置即可。
但它的时间复杂度相较上面的方法会更高一些,因为它需要对节点进行两次遍历,第一次并不访问,第二次再访问,因此需要一个记录访问次数的flag,在空间复杂度上也会更大,但它统一的形式能更好的理解。
class Node(object):
"""节点类"""
def __init__(self, elem=-1, lchild=None, rchild=None):
self.elem = elem
self.lchild = lchild
self.rchild = rchild
class Tree(object):
"""树类"""
def __init__(self):
self.root = Node()
self.myQueue = []
def add(self, elem):
"""为树添加节点,生成完全二叉树"""
node = Node(elem)
if self.root.elem == -1: # 如果树是空的,则对根节点赋值
self.root = node
self.myQueue.append(self.root)
else:
treeNode = self.myQueue[0] # 此结点的子树还没有齐。
if treeNode.lchild == None:
treeNode.lchild = node
self.myQueue.append(treeNode.lchild)
else:
treeNode.rchild = node
self.myQueue.append(treeNode.rchild)
self.myQueue.pop(0) # 如果该结点存在右子树,将此结点丢弃。
def front_recursive(self, root):
"""利用递归实现树的先序遍历"""
if root == None:
return
print (root.elem)
self.front_recursive(root.lchild)
self.front_recursive(root.rchild)
def middle_recursive(self, root):
"""利用递归实现树的中序遍历"""
if root == None:
return
self.middle_recursive(root.lchild)
print (root.elem)
self.middle_recursive(root.rchild)
def later_recursive(self, root):
"""利用递归实现树的后序遍历"""
if root == None:
return
self.later_recursive(root.lchild)
self.later_recursive(root.rchild)
print (root.elem)
def front_loop(self,root):
"""利用循环实现树的前序遍历"""
stack = []
stack.append((root,0))
while stack:
node, isVisit = stack.pop()
if not node: continue
if isVisit:
print (node.elem)
else:
stack.append((node.rchild, 0))
stack.append((node.lchild, 0))
stack.append((node, 1))
def middel_loop(self,root):
"""利用循环实现树的中序遍历"""
stack = []
stack.append((root,0))
while stack:
node, isVisit = stack.pop()
if not node: continue
if isVisit:
print (node.elem)
else:
stack.append((node.rchild, 0))
stack.append((node, 1))
stack.append((node.lchild, 0))
def later_loop(self,root):
"""利用循环实现树的后序遍历"""
stack = []
stack.append((root,0))
while stack:
node, isVisit = stack.pop()
if not node: continue
if isVisit:
print (node.elem)
else:
stack.append((node, 1))
stack.append((node.rchild, 0))
stack.append((node.lchild, 0))
if __name__ == '__main__':
"""主函数"""
elems = range(10) #生成十个数据作为树节点
tree = Tree() #新建一个树对象
for elem in elems:
tree.add(elem) #逐个添加树的节点, 生成完全二叉树
tree.front_recursive(tree.root)
tree.front_loop(tree.root)