分类预测 | MATLAB实现GRNN广义回归神经网络多特征分类预测

本文介绍了使用MATLAB实现GRNN广义回归神经网络进行多特征分类预测的方法,详细阐述了GRNN的基本原理、模型结构和预测过程,并讨论了其优点和潜在挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类预测 | MATLAB实现GRNN广义回归神经网络多特征分类预测

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现GRNN广义回归神经网络多特征分类预测
数据为多特征分类数据,输入12个特征,分四类。
运行环境MATLAB2018b及以上。广义回归神经网络(Generalized Regression Neural Network,GRNN)是一种用于回归问题的神经网络模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值