区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)

区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)

效果一览

在这里插入图片描述
在这里插入图片描述

基本介绍

区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)
1.Matlab实现基于QRTCN时间卷积神经网络分位数回归时间序列区间预测模型;
2.多图输出、多指标输出(MAE、MAPE、RMSE、MSE、R2、区间覆盖率、区间平均宽度百分比),单变量时序预测,含不同置信区间图;
3.data为数据集,用过去一段时间的变量,预测下一时刻,适用于负荷预测、风速预测等;main为主程序,其余为函数文件,无需运行;代码质量高,注释清楚;

程序设计

%% 此程序为单变量输入单步预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc

%% 导入数据
data =  readmatrix('数据集.xlsx');
[h1,l1]=data_process(data,8);   %单步预测%步长为8
res = [h1,l1];
num_samples = size(res,1);   %样本个数
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.8;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  格式转换
for i = 1 : M
    vp_train{i, 1} = p_train(:, i);
    vt_train{i, 1} = t_train(:, i);
end

for i = 1 : N
    vp_test{i, 1} = p_test(:, i);
    vt_test{i, 1} = t_test(:, i);
end



参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值