一区优化+SHAP分析+特征依赖图!NRBO-Transformer-GRU回归预测SHAP分析,深度学习可解释分析

一区优化+SHAP分析+特征依赖图!NRBO-Transformer-GRU回归预测SHAP分析,深度学习可解释分析

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

该MATLAB代码实现了一个基于Transformer-GRU的混合深度学习模型,通过牛顿-拉夫逊优化算法(NRBO)自动优化超参数,用于回归预测任务。核心功能包括:

  1. 数据预处理:导入数据、划分训练集/测试集、归一化处理
  2. 超参数优化:使用NRBO算法优化学习率、隐藏层节点和正则化系数
  3. 深度学习建模:构建结合Transformer位置编码、多头自注意力机制和GRU的混合模型
  4. 模型评估:计算RMSE、MAE、MAPE、R²等评估指标
  5. 结果可视化:预测结果对比、误差分析、优化过程曲线
  6. 模型可解释性:SHAP值分析特征重要性
    算法步骤与技术路线
  7. 数据预处理
    %% 导入数据
    res = xlsread(‘data.xlsx’);
    num_size = 0.7; % 70%训练集

%% 数据归一化 (mapminmax)
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);
2. NRBO超参数优化
%% 优化参数设置
fobj = @(x)fical(x); % 目标函数(需单独实现)
pop = 5; % 种群大小
Max_iter = 8; % 迭代次数
dim = 3; % 优化参数维度
lb = [1e-3, 32, 1e-3]; % 学习率/隐藏层节点/正则化系数下界
ub = [1e-1, 128, 1e-1];% 上界

%% 执行优化
[Best_score,Best_pos] = NRBO(pop, Max_iter, lb, ub, dim, fobj);
3. Transformer-GRU模型架构
layers = [
% 输入层
% 位置编码
% 注意力层
% GRU层
% 全连接输出
% 回归层
4. 模型训练与预测
%% 参数配置
options = trainingOptions(‘adam’, …
‘MaxEpochs’, 200, …
‘MiniBatchSize’, best_batchsize, … % NRBO优化值
‘InitialLearnRate’, best_lr); % NRBO优化值
5. 模型评估
%% 关键评估指标
error1 = sqrt(mean((T_sim1 - T_train).^2)); % RMSE
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2; % R²
MAPE1 = mean(abs((T_train - T_sim1)./T_train)); % MAPE
6. SHAP可解释性分析
%% SHAP特征重要性分析
shapValues = shapley_transformer_gru(net, test_data, ref_value);
drawShapSummaryPlot(shapValues, featureNames); % 特征贡献可视化

运行环境要求

  1. MATLAB版本:需R2023b及以上(依赖Deep Learning Toolbox)
  2. 必要工具箱:
    • Deep Learning Toolbox
    • Optimization Toolbox(用于NRBO)
    • Statistics and Machine Learning Toolbox
  3. 依赖函数:
    • NRBO.m(优化算法实现)
    • fical.m(目标函数)
    • SHAP相关函数
    典型应用场景
  4. 时间序列预测:
    • 电力负荷预测
    • 股票价格趋势分析
    • 气象数据预测(温度/降水量)
  5. 工业领域:
    • 设备剩余寿命预测
    • 产品质量指标回归
    • 能源消耗建模
  6. 交通领域:
    • 交通流量预测
    • 共享单车需求分析
    • 物流运输时间预估
    技术优势
  7. 混合架构优势:
    • Transformer捕捉长期依赖
    • GRU提取时序特征
    • 位置编码保留序列信息
  8. 自动优化:
    • NRBO算法自动搜索最优超参数
    • 避免手动调参的盲目性
  9. 可解释性强:
    • SHAP值量化特征贡献度
    • 可视化特征影响机制
  10. 鲁棒性保障:
    • 数据归一化处理
    • L2正则化防止过拟合
    • Dropout层增强泛化能力
    数据集
    在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复一区优化+SHAP分析+特征依赖图!NRBO-Transformer-GRU回归预测SHAP分析,深度学习可解释分析

数据预处理与划分:导入数据并划分为训练集(70%)和测试集(30%),进行归一化处理以适应模型输入。

模型构建:搭建基于Transformer-GRU结构,包含位置编码、自注意力机制、LSTM层和全连接层。

模型训练与预测:使用Adam优化器训练模型,并在训练集和测试集上进行预测。

性能评估:计算R²、MAE、MAPE、MSE、RMSE等回归指标,并通过图表展示预测结果与真实值的对比。

模型解释:通过SHAP(Shapley值)分析特征重要性,生成摘要图和依赖图,增强模型可解释性。


.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng('default');
%% 导入数据
res = xlsread('data.xlsx'); 
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
% ------------------ SHAP值计算 ------------------
x_norm_shap = mapminmax('apply', data_shap', x_settings)'; % 直接应用已有归一化参数
% 初始化SHAP值矩阵
shapValues = zeros(size(x_norm_shap));
refValue = mean(x_norm_shap, 1); % 参考值为特征均值
% 计算每个样本的SHAP值
rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
for i = 1:numSamples
    x = shap_x_norm(i, :);  % 当前样本(归一化后的值)






参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

<think>嗯,用户的问题是关于如何基于深度学习和CIC-IDS2017数据集设计实现入侵检测系统。用户明确提到了“设计”和“实现”两个关键需求,看来ta希望获得从理论到落地的完整指导。之前的对话历史显示用户可能有定的网络安全背景,但对深度学习在IDS中的具体应用还不够熟悉。从引用的文献来看,用户可能已经做过些基础调研:引用[1]和[4]都提到深度学习在入侵检测中的优势,尤其是处理新型攻击的能力;引用[2]和[3]则强调了数据集的重要性和IDS的基本原理。不过用户没有深究理论细节,而是更关注实操层面,说明ta可能处于项目启动阶段。需要特别注意几个潜在需求:用户没提但很可能是ta需要的——1)硬件资源要求(比如GPU显存限制)2)实际部署时的工程问题(如实时性)3)模型可解释性。在回答时应该覆盖这些隐性痛点。CIC-IDS2017数据集本身的特点决定了设计方向:它的网络流特征(82维)和7类攻击分布极不均衡(Benign流量占80%)。这意味着回答中必须强调数据预处理策略,特别是处理样本不平衡的技巧(如加权损失函数),否则用户直接套用标准CNN/LSTM可能效果很差。模型选择上,考虑到数据集同时包含空间特征(如数据包载荷)和时间特征(如连接持续时间),应该优先推荐时空混合模型。不过要注意提醒用户:如果只检测慢速攻击(如APT),可以简化时间建模部分。实现细节比如使用Keras/TensorFlow这些工具链的具体示例代码,对用户落地很有帮助。在部署建议部分,用户可能忽略了实时检测的延迟要求。需要明确告知线上推理的优化手段(如TensorRT加速),毕竟ta引用的论文[1]提到过基准测试的重要性。最后补充的可视化分析也很关键——网络安全领域工程师特别依赖可解释结果来验证模型决策。</think> 以下基于深度学习的入侵检测系统(IDS)设计方案结合**CIC-IDS2017数据集**的实现步骤,按开发流程结构化呈现: --- ### 、系统设计与实现流程 #### 1. **数据预处理**(核心环节) - **特征工程** 使用数据集提供的82维网络流特征(含协议类型、包长度统计、流持续时间等),需执行: ```python # 示例:关键预处理步骤 from sklearn.preprocessing import StandardScaler # 选择连续型特征列 cont_features = ['Flow Duration', 'Total Fwd Packets', 'Total Backward Packets', ...] scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train[cont_features]) ``` **关键操作**:时序特征需通过滑动窗口构建序列(适用LSTM模型)[^2] - **样本不均衡处理** 数据集中正常流量占比超80%,需采用 **SMOTE** 或 **加权损失函数**: ```python from imblearn.over_sampling import SMOTE smote = SMOTE(random_state=42) X_resampled, y_resampled = smote.fit_resample(X_train, y_train) ``` #### 2. **模型选择与结构设计** - **基础模型对比** | 模型类型 | 适用场景 | CIC-IDS2017效果 | |----------------|--------------------------|----------------| | CNN | 空间特征提取(如包载荷) | 检测准确率85%+ | | LSTM | 时序行为分析 | F1-score 0.92 | | Transformer | 长距离依赖建模 | 最新SOTA方案 | - **混合模型示例(CNN+LSTM)** ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, LSTM, Dense model = Sequential([ Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(time_steps, features)), LSTM(units=128, return_sequences=False), Dense(64, activation='relu'), Dense(7, activation='softmax') # 对应7类攻击标签 ]) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ``` #### 3. **模型训练关键参数** ```python history = model.fit( X_train, y_train, batch_size=1024, epochs=50, validation_split=0.2, class_weight=compute_class_weight('balanced', classes, y_train) # 样本权重 ) ``` #### 4. **评估指标选择** - 必需指标:**精确率(Precision)**, **召回率(Recall)**, **F1-score** - 特殊需求:攻击类别分解评估(如DDoS检测需单独指标) #### 5. **部署优化** - 模型轻量化:TensorRT加速推理 - 实时检测:Kafka+TensorFlow Serving流处理架构 --- ### 二、CIC-IDS2017使用注意事项 1. **数据集划分** 严格按时间分割(避免流量时序泄露),官方建议: - 训练集:周至周四流量 - 测试集:周五攻击流量 2. **特征有效性验证** 通过SHAP分析特征重要性,移除冗余特征(如`Flow Bytes/s`与`Flow Packets/s`强相关) 3. **攻击类型映射** 需将15种攻击归类为7大类标签(如BruteForce, DDoS等): | 原始攻击名 | 映射标签 | |--------------------|---------------| | FTP-Patator | BruteForce | | Web Attack-XSS | Web Attack | --- ### 三、实验性能对比(参考论文[^1]) | 模型 | 准确率 | 误报率 | 训练时间(h) | |------------------|--------|--------|-------------| | Random Forest | 93.2% | 2.1% | 0.5 | | CNN-BiLSTM | 97.6% | 0.8% | 3.2 | | Autoencoder+GRU | 96.3% | 1.2% | 4.1 | > **实现提示**:使用`scikit-learn`的`ColumnTransformer`处理异构特征,避免数值特征与分类特征混用导致模型失效 --- ### 四、可视化分析 1. 训练过程:TensorBoard监控损失曲线 ```python tensorboard_cb = tf.keras.callbacks.TensorBoard(log_dir='./logs') model.fit(..., callbacks=[tensorboard_cb]) ``` 2. 攻击检测结果:混淆矩阵热力图突出误报/漏报主要类别 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值