在通信系统中,可靠性是衡量系统性能的一个重要指标。为了评估系统的可靠性,通常使用误码率和误信率两个衡量标准。它们能够量化在传输过程中发生的错误数据比例,从而帮助评估系统的传输质量。
误码率(Symbol Error Rate, P_e )
误码率表示传输过程中错误码元占传输总码元的比例。其计算公式为:
Pe=错误码元数传输总码元数 P_e = \frac{\text{错误码元数}}{\text{传输总码元数}} Pe=传输总码元数错误码元数
误码率用于评估在信号传输过程中,由于噪声、干扰或其他因素导致的码元错误发生的频率。
误信率(Bit Error Rate, P_b )
误信率(又称比特误码率)表示错误比特数占传输总比特数的比例。其计算公式为:
Pb=错误比特数传输总比特数 P_b = \frac{\text{错误比特数}}{\text{传输总比特数}} Pb=传输总比特数错误比特数
误信率主要用于衡量传输过程中比特错误发生的频率,它更加精细地反映了通信系统的可靠性。
二进制系统中的关系
在二进制系统中,误信率和误码率之间存在简单的对应关系,即:
Pb=Pe P_b = P_e Pb=Pe
这是因为在二进制系统中,一个码元对应一个比特,因此码元错误等同于比特错误,误码率与误信率相等。
例题:字母组合的编码与信息传输速率计算
假设一个信源由字母ABCD组成,每个字母使用二进制码进行传输,传输规则如下:
- 00 代表 A
- 01 代表 B
- 10 代表 C
- 11 代表 D
每个脉冲的宽度为5毫秒。
(1)若每个字母出现的概率是等概率时,计算该信源的信息传输速率。
根据题目条件,字母ABCD的出现概率均为PA=PB=PC=PD=14 P_A = P_B = P_C = P_D = \frac{1}{4} PA=PB=PC=PD=41。可以先计算信源的熵H(x) H(x) H(x):
H(x)=−∑i=ADP(xi)log2P(xi) H(x) = -\sum_{i=A}^{D} P(x_i) \log_2 P(x_i) H(x)=−i=A∑DP(xi)log2P(xi)
H(x)=−(14log214+14log214+14log214+14log214) H(x) = -\left( \frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{4} \log_2 \frac{1}{4} \right) H(x)=−(41log241+41log241+41log241+41log241)
H(x)=2比特/符号 H(x) = 2 \text{比特/符号} H(x)=2比特/符号
码元传输速率RB R_B RB为每个符号所用的时间的倒数,每个符号由2个码元组成,每个码元占5毫秒,因此每个符号的传输时间为:
T=2×5毫秒=10毫秒 T = 2 \times 5 \text{毫秒} = 10 \text{毫秒} T=2×5毫秒=10毫秒
因此,码元传输速率为:
RB=110毫秒=100符号/秒 R_B = \frac{1}{10 \text{毫秒}} = 100 \text{符号/秒} RB=10毫秒1=100符号/秒
信息传输速率Rb R_b Rb为:
Rb=RB×H(x)=100×2=200比特/秒 R_b = R_B \times H(x) = 100 \times 2 = 200 \text{比特/秒} Rb=RB×H(x)=100×2=200比特/秒
(2)若字母出现的概率分别为:
PA=15,PB=14,PC=14,PD=310 P_A = \frac{1}{5}, P_B = \frac{1}{4}, P_C = \frac{1}{4}, P_D = \frac{3}{10} PA=51,PB=41,PC=41,PD=103
此时信源的熵为:
H(x)=−(15log215+14log214+14log214+310log2310) H(x) = -\left( \frac{1}{5} \log_2 \frac{1}{5} + \frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{4} \log_2 \frac{1}{4} + \frac{3}{10} \log_2 \frac{3}{10} \right) H(x)=−(51log251+41log241+41log241+103log2103)
计算得:
H(x)≈1.985比特/符号 H(x) \approx 1.985 \text{比特/符号} H(x)≈1.985比特/符号
因此,信息传输速率为:
Rb=RB×H(x)=100×1.985=198.5比特/秒 R_b = R_B \times H(x) = 100 \times 1.985 = 198.5 \text{比特/秒} Rb=RB×H(x)=100×1.985=198.5比特/秒
总结
通过计算信源的熵和码元传输速率,我们可以得出信息传输速率。当信源符号的概率分布均匀时,信息传输速率较高;当符号的概率分布不均匀时,信息传输速率会略有降低,但通常变化不大。这种方法在数字通信系统的性能分析中具有广泛应用。
在通信系统中,误码率和误信率是评估系统可靠性的重要指标。它们通过量化传输过程中发生的错误比例,帮助我们了解系统在传输数据时的误差情况。特别是在二进制系统中,误码率与误信率之间的简单关系使得对系统可靠性的评估更加直接。