L1与L2范数的区别:
1.从概率论的角度。很多范数约束相当于对参数添加先验分布。L1 范数的模型假设参数是服从拉普拉斯分布,L2范数的模型假设参数是服从高斯分布。
2.L1 范数可以得到稀疏解。 L1范数比L2范数能够产生更加稀疏的模型,L1正则在参数w比较小的情况下,能够直接缩减到0,因此可以起到特征选择的作用。
L1与L2范数的区别:
1.从概率论的角度。很多范数约束相当于对参数添加先验分布。L1 范数的模型假设参数是服从拉普拉斯分布,L2范数的模型假设参数是服从高斯分布。
2.L1 范数可以得到稀疏解。 L1范数比L2范数能够产生更加稀疏的模型,L1正则在参数w比较小的情况下,能够直接缩减到0,因此可以起到特征选择的作用。