⭐CVPR2025 FreeUV:无真值 3D 人脸纹理重建框架

📄论文题目:FreeUV: Ground-Truth-Free Realistic Facial UV Texture Recovery via Cross-Assembly Inference Strategy
✍️作者及机构:Xingchao Yang、Takafumi Taketomi、Yuki Endo、Yoshihiro Kanamori(CyberAgent、University of Tsukuba)
🧩面临问题:当前 3D 人脸 UV 纹理重建存在数据依赖和泛化能力不足的问题。一方面,传统方法依赖 costly 的真实 UV 数据集或合成 UV 数据,前者缺乏对野生场景的泛化能力,后者受限于 StyleGAN 的域限制,难以处理带妆容等多样人脸;另一方面,合成数据的多步骤流程易导致身份、光照、外观不一致,难以生成逼真连贯的纹理12。
🎯创新点及其具体研究方法:
1️⃣ 提出 FreeUV 框架:无需带标注的或合成的 UV 真值数据,基于预训练的 Stable Diffusion 模型,通过分离训练专注真实外观的网络和结构一致性的网络,在推理时结合二者生成高质量 UV 纹理,显著降低数据成本和复杂性35。
2️⃣ Cross-Assembly 推理策略:训练阶段,外观特征提取网络聚焦野生域实现 UV 到 2D 的逼真映射,结构重建网络依托 3DMM 域完成 2D 到 UV 的结构一致映射;推理时整合两个网络的 UV 专用模块,形成 UV 到 UV 的映射,减少大角度人脸和自遮挡的 UV 展开失真,兼顾真实外观与结构一致性46。
3️⃣ 抗干扰面部细节提取器:基于 CLIP 图像编码器并添加通道注意力层,从有失真或缺陷的 UV 纹理中捕捉面部毛发、皱纹、妆容等精细特征,通过选择性强调关键信息降低噪声影响,增强不同条件下 UV 纹理生成的质量和鲁棒性78。

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LetsonH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值