人脸补全

本文通过使用多种机器学习算法预测人脸的下半部分来实现人脸补全,并对比不同算法的效果。实验采用40人的数据集,每人10张图片,通过训练上半脸预测下半脸,最终展示预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人脸补全

需求:

根据人的上半边脸预测下半边脸,用各种算法取得的结果与原图比较

思考:

  • 这是一个回归问题,不是分类问题(人脸数据不固定)
  • 数据集一共包含40个人,每一个人10张照片,分布规律
  • 每一个人取出8张照片作为训练数据,2张照片作为测试数据
  • 样本特征和样本标签如何拆分?上半边脸作为样本特征,下半边脸作为特征标签
  • 效果图

  • 导包
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import fetch_olivetti_faces
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression,Ridge,Lasso
  • 处理数据
faces = fetch_olivetti_faces()
data = faces.data
images = faces.images
target = faces.target

X_train = []
y_train = []
X_test = []
y_test = []

for i in range(40):
    for j in range(10):
        face_data = data[i*10+j]
        up_face = face_data[:2048]
        bottom_face = face_data[2048:]
        if j < 8:
            X_train.append(up_face)
            y_train.append(bottom_face)
        else:
            X_test.append(up_face)
            y_test.append(bottom_face)
  • 训练数据
knn = KNeighborsRegressor()
linear = LinearRegression()
ridge = Ridge()
lasso = Lasso()

knn.fit(X_train,y_train)
linear.fit(X_train,y_train)
ridge.fit(X_train,y_train)
lasso.fit(X_train,y_train)
  • 预测数据
y_ = knn.predict(X_test)
line_y_ = linear.predict(X_test)
ridge_y_ = ridge.predict(X_test)
lasso_y_ = lasso.predict(X_test)

# 把所有的预测结果保存的一个列表
pre_results = [y_,line_y_,ridge_y_,lasso_y_]
titles = ['True','KNN','Linear','Ridge','Lasso']
  • 绘图
# 画布
plt.figure(figsize=(10,10))
for i in range(5):
    # 先取出真实的脸
    true_up_face = X_test[i].reshape(32,64)
    true_bottom_face = y_test[i].reshape(32,64)
    true_face = np.concatenate((true_up_face,true_bottom_face),axis=0)
    axes = plt.subplot(5,5,5*i+1)
    axes.set_title(titles[0])
    axes.axis('off')
    plt.imshow(true_face,cmap='gray')
    for index,y_ in enumerate(pre_results):
        # 获取到每一种算法模型预测出的下半边脸的数据
        pre_bottom_face = y_[i].reshape(32,64)
        pre_face = np.concatenate((true_up_face,pre_bottom_face),axis=0)
        axes = plt.subplot(5,5,5*i+index+2)
        axes.set_title(titles[index+1])
        axes.axis('off')
        plt.imshow(pre_face,cmap='gray')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值