Opencv实现行人检测
行人检测主要时通过Opencv的opencv2/objdetect/objdetect.hpp
下的HOGDescriptor实现此功能。
效果图展示:
需要声明一个文件,来存放我们需要识别的图片,文件名这里设置为posListINRIA.txt
并存放在项目的目录下。
E:\PicSource\crowd_1.jpg
E:\PicSource\crowd_2.jpg
E:\PicSource\crowd_3.jpg
主要实现代码为:
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <string>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
using namespace cv;
using namespace std;
void help()
{
printf(
"\nDemonstrate the use of the HoG descriptor using\n"
" HOGDescriptor::hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());\n"
"Usage:\n"
"./peopledetect (<image_filename> | <image_list>.txt)\n\n");
}
int main(int argc, char** argv)
{
Mat img;
FILE* f = 0;
char _filename[1024];
f = fopen("posListINRIA.txt", "rt");
HOGDescriptor hog;
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());//得到检测器
namedWindow("people detector", 1);
for (;;)
{
char* filename = _filename;
if (f)
{
if (!fgets(filename, (int)sizeof(_filename) - 2, f))
break;
//while(*filename && isspace(*filename))
// ++filename;
if (filename[0] == '#')
continue;
int l = strlen(filename);
while (l > 0 && isspace(filename[l - 1]))
--l;
filename[l] = '\0';
img = imread(filename);
}
printf("%s:\n", filename);
if (!img.data)
continue;
fflush(stdout);
vector<Rect> found, found_filtered;
double t = (double)getTickCount();
// run the detector with default parameters. to get a higher hit-rate
// (and more false alarms, respectively), decrease the hitThreshold and
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely).
hog.detectMultiScale(img, found, 0, Size(8, 8), Size(32, 32), 1.05, 2);
t = (double)getTickCount() - t;
printf("tdetection time = %gms\n", t*1000. / cv::getTickFrequency());
size_t i, j;
for (i = 0; i < found.size(); i++)
{
Rect r = found[i];
for (j = 0; j < found.size(); j++)
if (j != i && (r & found[j]) == r)
break;
if (j == found.size())
found_filtered.push_back(r);
}
for (i = 0; i < found_filtered.size(); i++)
{
Rect r = found_filtered[i];
// the HOG detector returns slightly larger rectangles than the real objects.
// so we slightly shrink the rectangles to get a nicer output.
r.x += cvRound(r.width*0.1);
r.width = cvRound(r.width*0.8);
r.y += cvRound(r.height*0.07);
r.height = cvRound(r.height*0.8);
rectangle(img, r.tl(), r.br(), cv::Scalar(0, 255, 0), 3);
}
imshow("people detector", img);
int c = waitKey(0) & 255;
if (c == 'q' || c == 'Q' || !f)
break;
}
if (f)
fclose(f);
return 0;
}