paddle 49 ODConv的可部署调整

本文介绍了在Paddle中优化ODConv结构以适应部署的过程,包括Attention和ODConv2D的修改,确保模型能成功转换为静态图和ONNX格式。详细讨论了调整的细节,如静态化Attention操作,去除不必要的reshape,并在训练、测试和部署阶段进行了验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ODConv是一种适用于轻量化模型的conv结构,可以在较少的参数下训练出多参数模型才能达到的精度,在相同的flop下可以稳定的涨2-3%个点。但是在paddle下部署ODConv动态卷积模型时会报出各种异常,导致模型无法转静态图或onnx格式(可能在pytorch下也是无法转换的)。为此研究ODConv中的细节,移除了其中不利于部署的设计部分,但在整体上又没有违背ODConv的创新点,且同样可以保证性能。

1、ODConv调整

1.1 Attention修改

对Attention中多头注意力结果reshape操作的静态化,对所有的reshape都不使用包含-1的通道项。需新增self.in_planes=in_planes、self.out_planes=out_planes

import paddle
import paddle.nn as nn
import paddle.nn.functional 
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值