0 前言
上一篇介绍了前向加噪过程,得到如下从 x0x_0x0 一步到 xtx_txt 过程:
- αt+βt=1\alpha_t +\beta_t=1αt+βt=1,其中 βt\beta_tβt 是正态分布方差,即第 ttt 步产生的噪声从 N(0,βt)N(0,\beta_t)N(0,βt) 采样。
- Xt=α‾tX0+1−α‾tztX_t = \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1- \overline{\alpha}_t}z_tXt=αtX0+1−αtzt,其中XtX_tXt表示第t步加噪后的图像,X0X_0X0表示初始图像。α‾t=αtαt−1αt−2...α1\overline{\alpha}_t = \alpha_t\alpha_{t-1}\alpha_{t-2}...\alpha_1αt=αtαt−1αt−2...α1,ztz_tzt ~N(0,1)N(0, 1)N(0,1)
可以看到,加噪过程唯一不确定的是从标准正态分布中随机采样的噪声ztz_tzt。因此,我们训练一个噪声预测模型,模型预测当前图像的噪声ztz_tzt,记作ϵ\epsilonϵ。
这样,可以从随机噪声中一步就可以预测到X0=1α‾t(Xt−1−α‾tϵ)X_0=\frac{1}{\sqrt{\overline \alpha_t}} (X_t-\sqrt{1-\overline\alpha_t}\epsilon)X0=αt1(Xt−1−αtϵ),然而,从图像中精准的预测ztz_tzt比较困难,尤其是在初始随机噪声中。
如果我们知道真实的X0X_0X0,结合XtX_tXt,我们可以比较置信的推导出xt−1x_{t-1}xt−1。然而我们不可能知道真实X0X_0X0,但是可以借助模型预测,虽然从XtX_tXt直接预测X0X_0X0不够准确,但是此时预测出的X0X_0X0是根据当前XtX_tXt输入预测的最大可能性的X0X_0X0。可以将模型预测的X0X_0X0假设为真实X0X_0X0。直接反推Xt−1X_{t-1}Xt−1,随着不断地反向迭代降噪,最终得到的X0X_0X0越来越接近真实分布。
1 数学基础
1.1 重参数技巧
若 X∼N(μ,σ2),Y∼N(0,1)X\sim N(\mu,\sigma^2),Y\sim N(0, 1)X∼N(μ,σ2),Y∼N(0,1) , 则从 XXX 中随机采样zzz 等价于从标准正态分布 YYY 中采样 z′z'z′ ,z=μ+σz′z=\mu+\sigma z'z=μ+σz′
1.2 正态分布概率密度函数
若X∼N(μ,σ2)X∼N(\mu,\sigma^2)X∼N(μ,σ2),则其概率密度函数:
f(x)=12πσe−(x−μ)22σ2
f(x)=\frac{1}{\sqrt{2\pi}\sigma }e^{-\frac{(x-\mu)^2}{2\sigma^2}}
f(x)=2πσ1e−2σ2(x−μ)2
1.3 贝叶斯公式
p(Xt−1∣Xt)=p(Xt∣Xt−1)p(Xt−1)p(Xt)
p(X_{t-1}|X_t) = p(X_t|X_{t-1}) \frac{p(X_{t-1})}{p(X_t)}
p(Xt−1∣Xt)=p(Xt∣Xt−1)p(Xt)p(Xt−1)
2 由 x0x_0x0、xtx_txt 反推 xt−1x_{t-1}xt−1
2.1 推断xt−1x_{t-1}xt−1分布
根据加噪过程,有如下4个公式:
q(xt−1∣x0)∼N(α‾t−1x0,(1−α‾t−1)I)公式(1)q(xt∣x0)∼N(α‾tx0,(1−α‾t)I)公式(2)q(xt∣xt−1)=αtxt−1+1−αtzt公式(3)q(xt∣xt−1,x0)=q(xt∣xt−1)∼N(αtxt−1,(1−αt)I)公式(4)
\begin{aligned}
&q(x_{t-1}|x_0) \sim N(\sqrt{\overline{\alpha}_{t-1}}x_0, (1-\overline{\alpha}_{t-1})I) &\qquad 公式(1)\\
&q(x_t|x_0) \sim N(\sqrt{\overline{\alpha}_t}x_0, (1-\overline{\alpha}_t)I) &\qquad 公式(2)\\
\\
&q(x_t|x_{t-1}) =\sqrt{\alpha_t}x_{t-1}+\sqrt{1-\alpha_t}z_t &\qquad 公式(3)\\
&q(x_t|x_{t-1},x_0) = q(x_t|x_{t-1}) \sim N(\sqrt{\alpha_t}x_{t-1},(1-\alpha_t)I) &\qquad 公式(4)
\end{aligned}
q(xt−1∣x0)∼N(αt−1x0,(1−αt−1)I)q(xt∣x0)∼N(αtx0,(1−αt)I)q(xt∣xt−1)=αtxt−1+1−αtztq(xt∣xt−1,x0)=q(xt∣xt−1)∼N(αtxt−1,(1−αt)I)公式(1)公式(2)公式(3)公式(4)
在已知 xtx_txt 与 x0x_0x0 时,反推xt−1x_{t-1}xt−1,套用贝叶斯公式:
q(xt−1∣xt,x0)=q(xt∣xt−1,x0)q(xt−1∣x0)q(xt∣x0)=q(xt∣xt−1)q(xt−1∣x0)q(xt∣x0)
\begin{aligned}
q(x_{t-1}|x_t, x_0) &= \frac{q(x_t|x_{t-1},x_0)q(x_{t-1}|x_0)}{q(x_t|x_0)} \\
&=\frac{q(x_t|x_{t-1})q(x_{t-1}|x_0)}{q(x_t|x_0)}
\end{aligned}
q(xt−1∣xt,x0)=q(xt∣x0)q(xt∣xt−1,x0)q(xt−1∣x0)=q(xt∣x0)q(xt∣xt−1)q(xt−1∣x0)
因为 q(xt−1∣x0)q(x_{t-1}|x_0)q(xt−1∣x0)、q(xt∣x0)q(x_t|x_0)q(xt∣x0)、q(xt∣xt−1,x0)q(x_t|x_{t-1},x_0)q(xt∣xt−1,x0) 三项都服从正态分布,所以q(xt−1∣xt,x0)q(x_{t-1}|x_t, x_0)q(xt−1∣xt,x0)服从某个正态分布,接下来只需计算这个正态分布的均值和方差。
2.2 推导xt−1x_{t-1}xt−1均值、方差
从概率密度函数入手,q(xt−1∣xt,x0)q(x_{t-1}|x_t, x_0)q(xt−1∣xt,x0) 概率密度如下:
12π1−αte−(xt−αtxt−1)22(1−αt)12π1−α‾t−1e−(xt−1−α‾t−1x0)22(1−α‾t−1)12π1−α‾te−(xt−α‾tx0)22(1−α‾t)=12π(1−αt)(1−α‾t−1)1−α‾te−[(xt−αtxt−1)22(1−αt)+(xt−1−α‾t−1x0)22(1−α‾t−1)−(xt−α‾tx0)22(1−α‾t)]公式(5)
\begin{aligned}
&\frac{\frac{1}{\sqrt{2\pi}\sqrt{1-\alpha_t}} e^{-\frac{(x_t-\sqrt{\alpha_t}x_{t-1})^2}{2(1-\alpha_t)}} \frac{1}{\sqrt{2\pi}\sqrt{1-\overline{\alpha}_{t-1}} }e^{-\frac{(x_{t-1}-\sqrt{\overline{\alpha}_{t-1}}x_0)^2}{2(1-\overline{\alpha}_{t-1})}}} {\frac{1}{\sqrt{2\pi}\sqrt{1-\overline{\alpha}_t} }e^{-\frac{(x_t-\sqrt{\overline{\alpha}_t}x_0)^2}{2(1-\overline{\alpha}_t)}}} \\
\\
&=\frac{1}{\sqrt{2\pi}\sqrt\frac{(1-\alpha_t)(1-\overline{\alpha}_{t-1})}{1-\overline{\alpha}_t}} e^{-[\frac{(x_t-\sqrt{\alpha_t}x_{t-1})^2}{2(1-\alpha_t)}+\frac{(x_{t-1}-\sqrt{\overline{\alpha}_{t-1}}x_0)^2}{2(1-\overline{\alpha}_{t-1})}-\frac{(x_t-\sqrt{\overline{\alpha}_t}x_0)^2}{2(1-\overline{\alpha}_t)}]} \qquad\qquad公式(5)
\end{aligned}
2π1−αt1e−2(1−αt)(xt−αtx0)22π1−αt1e−2(1−αt)(xt−αtxt−1)22π1−αt−11e−2(1−αt−1)(xt−1−αt−1x0)2=2π1−αt(1−αt)(1−αt−1)1e−[2(1−αt)(xt−αtxt−1)2+2(1−αt−1)(xt−1−αt−1x0)2−2(1−αt)(xt−αtx0)2]公式(5)
前面有说到q(xt−1∣xt,x0)q(x_{t-1}|x_t, x_0)q(xt−1∣xt,x0)服从某个正态分布,因此公式(1)是对应正态分布的概率密度函数。而正态分布的概率密度函数形式为f(x)=12πσe−(x−μ)22σ2f(x)=\frac{1}{\sqrt{2\pi}\sigma }e^{-\frac{(x-\mu)^2}{2\sigma^2}}f(x)=2πσ1e−2σ2(x−μ)2,对号入座,
12πσe(...)=12π(1−αt)(1−α‾t−1)1−α‾te(...)
\frac{1}{\sqrt{2\pi}\sigma } e^{(...)}= \frac{1}{\sqrt{2\pi}\sqrt\frac{(1-\alpha_t)(1-\overline{\alpha}_{t-1})}{1-\overline{\alpha}_t}} e^{(...)}
2πσ1e(...)=2π1−αt(1−αt)(1−αt−1)1e(...)
即可以得知q(xt−1∣xt,x0)q(x_{t-1}|x_t, x_0)q(xt−1∣xt,x0)的方差只能为:
σ2=(1−αt)(1−α‾t−1)1−α‾t公式(6)
\sigma^2 = \frac{(1-\alpha_t)(1-\overline{\alpha}_{t-1})} {1-\overline{\alpha}_t} \qquad\qquad公式(6)
σ2=1−αt(1−αt)(1−αt−1)公式(6)
为了凑成正态分布的概率密度函数,整理指数部分为−(x−μ)22σ2-\frac{(x-\mu)^2}{2\sigma^2}−2σ2(x−μ)2,即分母凑成2σ22\sigma^22σ2形式,结合公式(2):
−[(xt−αtxt−1)22(1−αt)+(xt−1−α‾t−1x0)22(1−α‾t−1)−(xt−α‾tx0)22(1−α‾t)]=−[(xt−αtxt−1)22σ2∗1−α‾t−11−α‾t+(xt−1−α‾t−1x0)22σ2∗1−αt1−α‾t−(xt−α‾tx0)22σ2∗(1−αt)(1−α‾t−1)(1−α‾t)2]=−12σ2[xt−12−2αt(1−α‾t−1)xt+α‾t−1(1−αt)x01−α‾txt−1+(αt(1−α‾t−1)xt+α‾t−1(1−αt)x01−α‾t)2]=−12σ2[xt−1−αt(1−α‾t−1)xt+α‾t−1(1−αt)x01−α‾t]2
\begin{aligned}
&-[\frac{(x_t-\sqrt{\alpha_t}x_{t-1})^2}{2(1-\alpha_t)}+\frac{(x_{t-1}-\sqrt{\overline{\alpha}_{t-1}}x_0)^2}{2(1-\overline{\alpha}_{t-1})}-\frac{(x_t-\sqrt{\overline{\alpha}_t}x_0)^2}{2(1-\overline{\alpha}_t)}] \\
\\
&=-[\frac{(x_t-\sqrt{\alpha_t}x_{t-1})^2}{2\sigma^2 } * \frac { 1-\overline{\alpha}_{t-1}} {1-\overline{\alpha}_t}
+\frac{(x_{t-1}-\sqrt{\overline{\alpha}_{t-1}}x_0)^2}{2\sigma^2} * \frac{1-\alpha_t} {1-\overline{\alpha}_t}
-\frac{(x_t-\sqrt{\overline{\alpha}_t}x_0)^2}{2\sigma^2} * \frac{(1-\alpha_t)(1-\overline{\alpha}_{t-1})} {(1-\overline{\alpha}_t)^2}
] \\ \\
&=-\frac{1}{2\sigma^2}[x_{t-1}^2 - 2 \frac{ \sqrt{\alpha_t}(1-\overline\alpha_{t-1})x_t+\sqrt{\overline\alpha_{t-1}}(1-\alpha_t)x_0 }{1-\overline\alpha_t}x_{t-1}
+(\frac{ \sqrt{\alpha_t}(1-\overline\alpha_{t-1})x_t+\sqrt{\overline\alpha_{t-1}}(1-\alpha_t)x_0 }{1-\overline\alpha_t})^2
] \\ \\
&=-\frac{1}{2\sigma^2}[x_{t-1} - \frac{ \sqrt{\alpha_t}(1-\overline\alpha_{t-1})x_t+\sqrt{\overline\alpha_{t-1}}(1-\alpha_t)x_0 }{1-\overline\alpha_t}]^2
\end{aligned}
−[2(1−αt)(xt−αtxt−1)2+2(1−αt−1)(xt−1−αt−1x0)2−2(1−αt)(xt−αtx0)2]=−[2σ2(xt−αtxt−1)2∗1−αt1−αt−1+2σ2(xt−1−αt−1x0)2∗1−αt1−αt−2σ2(xt−αtx0)2∗(1−αt)2(1−αt)(1−αt−1)]=−2σ21[xt−12−21−αtαt(1−αt−1)xt+αt−1(1−αt)x0xt−1+(1−αtαt(1−αt−1)xt+αt−1(1−αt)x0)2]=−2σ21[xt−1−1−αtαt(1−αt−1)xt+αt−1(1−αt)x0]2
对号入座,可得均值:
μ=αt(1−α‾t−1)xt+α‾t−1(1−αt)x01−α‾t公式(7)\mu= \frac{ \sqrt{\alpha_t}(1-\overline\alpha_{t-1})x_t+\sqrt{\overline\alpha_{t-1}}(1-\alpha_t)x_0 }{1-\overline\alpha_t} \qquad\qquad公式(7)μ=1−αtαt(1−αt−1)xt+αt−1(1−αt)x0公式(7)
将公式(7)中的x0x_0x0用模型预测噪声 ϵ\epsilonϵ 和 xtx_txt 替换:
xt=α‾tx0+1−α‾tϵ=>x0=xt−1−α‾tϵα‾t
\begin{aligned}
&x_t = \sqrt{\overline\alpha_t}x_0+ \sqrt{1-\overline\alpha_t}\epsilon \\
\\
=> \quad&x_0 = \frac {x_t- \sqrt{1-\overline\alpha_t}\epsilon}{\sqrt{\overline \alpha_t}}
\end{aligned}
=>xt=αtx0+1−αtϵx0=αtxt−1−αtϵ
替换 x0x_0x0 并化简得到均值:
μ=αt(1−α‾t−1)xt+α‾t−1(1−αt)x01−α‾t=αt(1−α‾t−1)xt+1αt(1−αt)(xt−1−α‾tϵ)1−α‾t=1αtαt(1−α‾t−1)xt+(1−αt)xt−(1−αt)1−α‾tϵ)1−α‾t=1αt(1−α‾t)xt−(1−αt)1−α‾tϵ)1−α‾t=1αt(xt−1−αt1−α‾tϵ)
\begin{aligned}
\mu&= \frac{ \sqrt{\alpha_t}(1-\overline\alpha_{t-1})x_t+\sqrt{\overline\alpha_{t-1}}(1-\alpha_t)x_0 }{1-\overline\alpha_t} \\ \\
&=\frac{ \sqrt{\alpha_t}(1-\overline\alpha_{t-1})x_t+ \frac{1}{\sqrt{\alpha_t}}(1-\alpha_t)(x_t-\sqrt{1-\overline \alpha_t} \epsilon) }{1-\overline\alpha_t} \\ \\
&=\frac{1}{\sqrt{\alpha_t}} \frac {\alpha_t(1-\overline\alpha_{t-1})x_t+(1-\alpha_t)x_t - (1-\alpha_t)\sqrt{1-\overline\alpha_t}\epsilon)} {1-\overline\alpha_t} \\ \\
&=\frac{1}{\sqrt{\alpha_t}} \frac{(1-\overline\alpha_t)x_t-(1-\alpha_t)\sqrt{1-\overline\alpha_t}\epsilon)}{1-\overline\alpha_t} \\ \\
&=\frac{1}{\sqrt{\alpha_t}} (x_t - \frac{ 1-\alpha_t }{\sqrt{1-\overline\alpha_t}} \epsilon)
\end{aligned}
μ=1−αtαt(1−αt−1)xt+αt−1(1−αt)x0=1−αtαt(1−αt−1)xt+αt1(1−αt)(xt−1−αtϵ)=αt11−αtαt(1−αt−1)xt+(1−αt)xt−(1−αt)1−αtϵ)=αt11−αt(1−αt)xt−(1−αt)1−αtϵ)=αt1(xt−1−αt1−αtϵ)
至此,我们得到了q(xt−1∣xt,x0)q(x_{t-1}|x_t, x_0)q(xt−1∣xt,x0)所服从正态分布的均值 μ\muμ 和方差 σ2\sigma^2σ2:
μ=1αt(xt−1−αt1−α‾tϵ)公式(8)σ2=(1−αt)(1−α‾t−1)1−α‾t=1−α‾t−11−α‾tβt公式(9)
\begin{aligned}
\mu &= \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{ 1-\alpha_t }{\sqrt{1-\overline\alpha_t}} \epsilon)&\qquad\qquad公式(8)\\
\\
\sigma^2 &= \frac{(1-\alpha_t)(1-\overline{\alpha}_{t-1})} {1-\overline{\alpha}_t} = \frac{1-\overline{\alpha}_{t-1}} {1-\overline{\alpha}_t} \beta_t &\qquad\qquad公式(9)
\end{aligned}
μσ2=αt1(xt−1−αt1−αtϵ)=1−αt(1−αt)(1−αt−1)=1−αt1−αt−1βt公式(8)公式(9)
注意公式(9),作者实验发现,σ2=1−α‾t−11−α‾tβt\sigma^2 =\frac{1-\overline{\alpha}_{t-1}} {1-\overline{\alpha}_t} \beta_tσ2=1−αt1−αt−1βt 与 σ2=βt\sigma^2 =\beta_tσ2=βt 效果相似。这也很好理解,因为1−α‾t−11−α‾t\frac{1-\overline{\alpha}_{t-1}} {1-\overline{\alpha}_t}1−αt1−αt−1本身就近似等于1。
因此,方差就直接被替换。再次重新整理最终的均值和方差:
μ=1αt(xt−βt1−α‾tϵ)σ2=βt
\begin{aligned}
\mu &= \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{ \beta_t}{\sqrt{1-\overline\alpha_t}} \epsilon) \\ \\
\sigma^2 &= \beta_t
\end{aligned}
μσ2=αt1(xt−1−αtβtϵ)=βt
可得:
q(xt−1∣xt)∼N(μ,σ2)=N(1αt(xt−βt1−α‾tϵ),βt) q(x_{t-1}|x_t) \sim N(\mu, \sigma^2) = N(\frac{1}{\sqrt{\alpha_t}} (x_t - \frac{ \beta_t}{\sqrt{1-\overline\alpha_t}} \epsilon) , \beta_t) q(xt−1∣xt)∼N(μ,σ2)=N(αt1(xt−1−αtβtϵ),βt)
3 反向降噪
利用重参数技巧:
xt−1=μt+σz=1αt(xt−βt1−α‾tϵ)+βtz
\begin{aligned}
x_{t-1} &= \mu_t + \sigma z \\\\
&=\frac{1}{\sqrt{\alpha_t}} (x_t - \frac{ \beta_t}{\sqrt{1-\overline\alpha_t}} \epsilon) + \sqrt{\beta_t} z
\end{aligned}
xt−1=μt+σz=αt1(xt−1−αtβtϵ)+βtz
与论文降噪采样算法完全一致。