P3805 【模板】manacher 算法【马拉车】

该博客介绍了一种高效的方法——Manacher算法,用于在字符串中找出最长的回文子串。代码示例展示了如何实现这一算法,并在洛谷平台上运行验证。该算法能快速找到最长回文串的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

快速的求出一个字符串中最长的回文串的长度
在这里插入图片描述
https://www.luogu.com.cn/problem/P3805

#include <iostream>  
#include <cstring>
#include <algorithm>  
using namespace std;
char s[20000000+10];
char s_new[20000000+10];
int p[20000000+10];//p[i] 表示以 i 为中心的最长回文的半径
//使用马拉车之前需要对字符串进行改造 
int Init()
{
    int len = strlen(s);
    s_new[0] = '$';
    s_new[1] = '#';
    int j = 2;

    for (int i = 0; i < len; i++)
    {
        s_new[j++] = s[i];
        s_new[j++] = '#';
    }

    s_new[j++] = '^';  // 别忘了哦


    return j;  // 返回 s_new 的长度
}

int Manacher()
{
    int len = Init();  // 取得新字符串长度并完成向 s_new 的转换
    int max_len = -1;  // 最长回文长度

    int id;//id为i和j的中心点 i以 id 为对称点翻折到j的位置
    int mx = 0;// mx 代表以 id 为中心的最长回文的右边界

    for (int i = 1; i < len; i++)
    {
        if (i < mx)//mx 代表以 id 为中心的最长回文的右边界
            p[i] = min(p[2 * id - i], mx - i); // 2 * id - i 为 i 关于 id 的对称点
        else 
            p[i] = 1;//超过边界总共就不是回文了

        while (s_new[i - p[i]] == s_new[i + p[i]])  // 不需边界判断,因为左有 $,右有 ^ 二者必不可能相等
            p[i]++;

        // 我们每走一步 i,都要和 mx 比较,我们希望 mx 尽可能的远,
        // 这样才能更有机会执行 if (i < mx)这句代码,从而提高效率
        if (mx < i + p[i])//i的位置再加上i对应的回文半径即为最远的边界
        {
            id = i;
            mx = i + p[i];
        }

        max_len = max(max_len, p[i] - 1);// p[i]-1 即为原字符串中最长回文串的长度
    }

    return max_len;
}

int main()
{

    scanf("%s", s);
    cout<<Manacher()<<endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值