交叉熵损失函数(Cross-Entropy Loss)

本文解释了交叉熵损失函数在深度学习中的应用,它是用于分类问题的一种指标,衡量预测与真实标签的差距。损失越小,模型预测越接近真实,0表示最佳状态。举例说明了损失值的比较原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

交叉熵损失函数(Cross-Entropy Loss)是在深度学习中常用的损失函数之一,它适用于分类问题。交叉熵损失函数的作用是衡量预测结果与真实标签之间的差距,从而用于模型的优化。
在这里插入图片描述
越接近真实标签,损失越小。在交叉熵损失函数中,损失值越接近0,表示模型的预测越接近真实标签。
例如:-1和-100。-1更接近0所以它比-100更接近真实标签。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值