CUDA和cuDNN的安装

本文介绍了CUDA和cuDNN的基本概念,NVIDIA的GPU加速平台与深度学习库,提供两种安装方法,以及如何通过代码验证CUDA和cuDNN的安装。还提到可能的版本兼容性问题及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考资料:https://zhuanlan.zhihu.com/p/83971195

CUDA和cuDNN介绍

CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。

需要注意的是,CUDA和cuDNN是英伟达显卡对应的,若不是英伟达显卡则不行。
CUDA和cuDNN简单的来说就是再训练深度学习模型的时候用来加速的,CUDA安装后cuDNN也可以不用安装看个人习惯。

安装

nvidia-smi //看其显卡对应的型号的CUDA

在这里插入图片描述

CUDA网址:https://developer.nvidia.com/cuda-toolkit-archive
cuDNN网址:https://developer.nvidia.com/rdp/cudnn-archive
详细的教程看:https://blog.csdn.net/EnochChen_/article/details/127867036
https://blog.csdn.net/m0_66420727/article/details/127824595
有两种安装方法:

  • 就按照上面的进入官网下载安装包安装。
  • 就是进去pytorch官网进行安装。https://pytorch.org/get-started/previous-versions/在官网下载对应版本的CUDA和pytorch。这里下载的是pytorch和CUDA一块下载了。(注意这里下载的pytorch就是GPU版本)

验证

CUDA否安装成功
在这里插入图片描述
检测CUDA能否访问GPU

import torch
torch.cuda.is_available()   # 检查cuda是否可用返回true说明可以
torch.version.cuda          # 查看cuda版本

检测cuDNN能否访问GPU

from torch
torch.backends.cudnn.is_available()  # 检查cudnn是否可用返回true说明可以
torch.backends.cudnn.version()       # 查看cudnn版本

若不能CUDA不能访问GPU可能是pytorch版本和CUDA版本不匹配问题。
这篇文章也不错:https://blog.csdn.net/PSpiritV/article/details/123796341

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值