keras实现CNN-MNIST手写数字识别

本文介绍了一个用于MNIST手写数字识别的卷积神经网络(CNN)模型实现过程。该模型包含三层卷积层,每层后接最大池化层及Dropout层,并通过全连接层进行分类。采用Adagrad优化器,训练3个周期后,在测试集上取得了良好的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模型笔记

在这里插入图片描述

二、全部代码

import numpy as np
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
#数据载入和处理
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0],28,28,1).astype('float32') / 255.0
x_test = x_test.reshape(x_test.shape[0],28,28,1).astype('float32') / 255.0
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
#创建模型
model = Sequential()
#layer1
model.add(Conv2D(filters=64,kernel_size=(3,3),strides=(1,1),padding='same',
                 input_shape=(28,28,1),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
#layer2
model.add(Conv2D(filters=128,kernel_size=(3,3),strides=(1,1),padding='same',
                 activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
#layer3
model.add(Conv2D(filters=256,kernel_size=(3,3),strides=(1,1),padding='same',
                 activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
#(3*3*256) =>  2304
model.add(Flatten())
#再接4个全连接层
model.add(Dense(units=128,activation='relu'))
model.add(Dense(units=64,activation='relu'))
model.add(Dense(units=32,activation='relu'))
model.add(Dense(units=10,activation='softmax'))
#定义损失函数,优化器,评估参数
model.compile(optimizer='adagrad',loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型      
#batch_size:每一次执行128张图片   validation_data:边训练边用验证集测试  epochs:自己训练执行轮次
model.fit(x_train,y_train,batch_size=128,epochs=3,validation_data=(x_test,y_test))
#计算模型准确率
score = model.evaluate(x_test,y_test)
print("准确率="+str(score*100))

三、结果显示

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值