一、模型笔记

二、全部代码
import numpy as np
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0],28,28,1).astype('float32') / 255.0
x_test = x_test.reshape(x_test.shape[0],28,28,1).astype('float32') / 255.0
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
model = Sequential()
model.add(Conv2D(filters=64,kernel_size=(3,3),strides=(1,1),padding='same',
input_shape=(28,28,1),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(filters=128,kernel_size=(3,3),strides=(1,1),padding='same',
activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Conv2D(filters=256,kernel_size=(3,3),strides=(1,1),padding='same',
activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(units=128,activation='relu'))
model.add(Dense(units=64,activation='relu'))
model.add(Dense(units=32,activation='relu'))
model.add(Dense(units=10,activation='softmax'))
model.compile(optimizer='adagrad',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=128,epochs=3,validation_data=(x_test,y_test))
score = model.evaluate(x_test,y_test)
print("准确率="+str(score*100))
三、结果显示
