Python数据处理047:数据预处理

本文详细介绍了Pandas在数据预处理中的应用,包括数据清洗(如空值和缺失值处理)、数据合并(如concat和merge函数)、数据重塑(stack和unstack方法)以及数据转换(如重命名、离散化和哑变量处理)。通过实例解析了如何使用Pandas有效地清洗数据、合并多数据源、调整数据结构以及转换数据类型,为后续数据分析打下坚实基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python数据分析与应用 | 数据预处理

数据清洗

数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节。

数据清洗的目的在于提高数据质量,将脏数据清洗干净,使原数据具有完整性、唯一性、权威性、合法性、一致性等特点。

脏数据在这里指的是对数据分析没有实际意义、格式非法、不在指定范围内的数据。

空值一般表示数据未知、不适用或将在以后添加数据。缺失值是指数据集中某个或某些属性的值是不完整的。

一般空值使用None表示,缺失值使用NaN表示。

Pandas中提供了一些用于检查或处理空值和缺失值的函数或方法。

  • 使用isnull()和notnull()函数可以判断数据集中是否存在空值和缺失值。
  • 对于缺失数据可以使用dropna()和fillna()方法对缺失值进行删除和填充。

isnull()函数的语法格式如下:

pandas.isnull(obj)
  • 上述函数中只有一个参数obj,表示检查空值的对象。
  • isnull()函数会返回一个布尔类型的值,如果返回的结果为True,则说明有空值或缺失值,否则为False。(NaN或None映射到True值,其它内容映射到Fal
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值