1.题目描述
小洛看着一堆只包含’(‘和’)‘的括号序列犯愁了,小洛想知道这串序列里最长正确匹配的序列长度是多少,你能帮帮小洛吗?
输入
输入一个只包含’(‘与’)'的字符串,字符串长度n满足0<n≤50000
输出
输出一个数表示子串长度
数据范围
对于100%的数据,0<n≤50000
输入样例
((((())(
输出样例
4
2.问题分析
说到括号匹配问题,我们很容易想到利用栈来解决,但是直接使用栈来进行处理的话,你会发现,无法记录在入栈出栈过程中匹配的长度。因此,我们对栈进行优化,对于栈中存储的每个元素我们都把它当作一个结点,包含data(左括号或者右括号),以及标号值,用index表示。
对于一个序列"( ( ( ) ) ) ) )",首先我们将括号序列依次进行标号,分别为12345678我们让左括号直接入栈,遇到右括号则观察栈中栈顶元素是否为左括号,若是,则出栈;反之,则入栈。
反复进行入栈和出栈操作后,栈中只剩下标号为7、8的两个右括号,则最大匹配长度为7 - 0 - 1 = 6;
我们再来看一个序列"()()",标号分别为1234,进行入栈出栈操作后,最终栈中元素为0,此时最大匹配长度则为字符串的长度,即为4 - 0 = 4。
3.算法分析
对于执行后的栈,我们大致可以分为如下的三种情况:
- 栈为空:此时最大匹配长度为字符串的长度;
- 栈底为" ) ":此时隐藏一种匹配长度为栈底标号 - 0 - 1;
- 栈底为" ( ": 只需要比较任意相邻两个栈中元素标号的差,匹配长度为end - start - 1。
以题目的测试样例为例,输入字符串((((())(,最终剩余在栈中的为标号为1238的左括号,此时最大匹配长度为8 - 3 -1 = 4。
4.实现代码
这里简单对以上讨论的三种情况进行实现,详细可见注释内容。
import java.util.Scanner;
import java.util.Stack;
// 结点类,用于入栈元素的标号
class Node{
char data;// 存储括号值
int index;// 用于标号
public Node(char data, int index){
this.data = data;
this.index = index;
}
}
public class test03 {
public static void main(String[] args) {
Stack<Node> stack = new Stack<>(); // 入栈的每个元素都是带有标号的左括号,而匹配的长度则为两个相邻的左括号标号的差值-1
Scanner in = new Scanner(System.in);
String s = in.next();
char[] strings = s.toCharArray();
boolean flag = false;
int temp = 0; // 临时储存
// 遍历括号字符串
int i; // 这里把i单独声明是为了扩大作用域便于end使用
for ( i = 0 ; i < strings.length; i++) {
// 遇到左括号入栈,栈中的标号以1为起点
if(strings[i] == '('){
stack.push(new Node(strings[i], i+1));
}
// 遇到右括号看栈内是否匹配
if(strings[i] == ')'){
if(stack.empty()){
// 处理)))这种情况
flag = true; // 说明栈是以右括号为栈底
temp = i+1;
stack.push(new Node(strings[i], i+1)); // 防止栈下溢
}else{
// 匹配则出栈,不匹配则入栈
if(stack.peek().data == '('){
stack.pop();
}else{
stack.push(new Node(strings[i], i+1));
}
}
}
}
// 计算匹配长度
int start = 0, length = 0, end = i+1;
// 括号完全匹配,即栈中元素为0,则长度为字符串长度
if(stack.empty())
length = end - start - 1;
while (!stack.empty()){
// 栈中以右括号为栈底元素,需要记录一次栈底元素标号与0的差值
if(flag){
length = Math.max(temp - start -1, length);
}
// 栈中以左括号为栈底元素,只需要比较标号的差值
start = stack.pop().index;
//System.out.println("start = " + start);
length = Math.max(end - start - 1, length);
// 以start为新的end
end = start;
}
// 输出结果
System.out.println(length);
in.close();
}
}
5.实现结果
-
输入((((())(
-
输入()()
-
输入)))))
6.代码优化
从上面的实现中发现,分为三种情况即单独对栈空的情况进行计算、使用了flag变量来判断栈底是否为右括号、单独对栈底为左括号的情况进行运算。虽然逻辑上没有问题,但是这样不仅多声明了变量,还使代码显得异常复杂。
那么有没有办法可以简化计算呢?
我们发现,只要先将一个标号为0的无关量入栈,这样无论何种情况,在进行最后一步“计算最大匹配长度”时,栈都不会为空,这样就不需要对栈空的情形进行单独讨论;不仅如此,我们存储的0无关量也可以解决右括号为栈底的情况,可以把无关量想成左括号,进行一般情况下的栈元素的标号差操作,即可求出匹配长度。
6.1 具体代码优化实现
import java.util.Scanner;
import java.util.Stack;
// 结点类,用于入栈元素的标号
class Node{
char data;// 存储括号值
int index;// 用于标号
public Node(char data, int index){
this.data = data;
this.index = index;
}
}
public class test03 {
public static void main(String[] args) {
Stack<Node> stack = new Stack<>(); // 入栈的每个元素都是带有标号的左括号,而匹配的长度则为两个相邻的左括号标号的差值-1
Scanner in = new Scanner(System.in);
String s = in.next();
char[] strings = s.toCharArray();
stack.push(new Node('0', 0));// 标号0位置存储一个无关量,便于计算
// 遍历括号字符串
int i; // 这里把i单独声明是为了扩大作用域便于end使用
for ( i = 0 ; i < strings.length; i++) {
// 遇到左括号入栈,栈中的标号以1为起点
if(strings[i] == '('){
stack.push(new Node(strings[i], i+1));
}
// 遇到右括号看栈内是否匹配
if(strings[i] == ')'){
if(stack.empty()){
stack.push(new Node(strings[i], i+1)); // 防止栈下溢
}else{
// 匹配则出栈,不匹配则入栈
if(stack.peek().data == '('){
stack.pop();
}else{
stack.push(new Node(strings[i], i+1));
}
}
}
}
// 计算匹配长度
int start = 0, length = 0, end = i+1;
while (!stack.empty()){
start = stack.pop().index;
//System.out.println("start = " + start);
length = Math.max(end - start - 1, length);
// 以start为新的end
end = start;
}
// 输出结果
System.out.println(length);
in.close();
}
}