量化交易 第九课 回测阶段介绍

本文介绍了如何结合筛选出的多个因子选择股票的过程,重点讲述了回测的基本概念及其在算法交易中的应用,并对比了打分法和回归法两种常见的多因子选股方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第九课 回测阶段介绍

概述

我们在之前的文章中简单的说了一下如何做因子选择. 本节我们将介绍一下如何结合筛选出来的多个因子来去选择某些股票.
在这里插入图片描述

回测

在丰富的数据后, 算法交易可以根据历史数据, 对未来收益有一个更好的估计. 通过历史数据去估计未来收益, 这样的过程称之为回测 (backtesting).

回测选股方法

多因子选股最常用的方法就是打分法和回归法. 至于这两种方法哪个个效果更好需要进行实际的墨迹交易或者实盘交易之后才能确定. 通常某你交易测试结果来说, 打分法效果更好.

  • 打分法选股
  • 回归法选股

这两种方法都是在确定因子的权重来选择固定的股票.

<think>我们正在设计一个适用于熊市行情的量化交易策略。熊市通常指价格长期下跌的市场,投资者情绪悲观,市场波动性可能增加。在这样的市场环境下,我们需要采取防御性策略,同时利用下跌趋势获利。参考引用内容:-引用[1]提到"熊市力量指标",这是一个衡量市场下跌动能的指标,我们可以考虑将其纳入策略。-引用[3]和[5]强调了趋势跟踪策略的重要性,但在熊市中,我们需要特别关注下跌趋势的跟踪。 -引用[4]指出在交易前需要判断市场是趋势还是震荡,并采取不同的策略(趋势追涨杀跌,震荡高抛低吸)。在熊市中,我们可能遇到连续下跌(趋势)和下跌过程中的反弹(震荡)。-引用[5]还提到,试图同时完美捕捉趋势和震荡是困难的,因此我们需要明确策略的主要方向。设计思路:1.识别熊市环境:使用长期移动平均线(如200日均线)来判断市场是否处于熊市(价格低于长期均线且均线向下)。 2.趋势跟踪:在确认熊市后,采用趋势跟踪策略,主要做空或持有空头头寸。 3.风险管理:熊市波动大,需严格控制风险,设置止损和动态止盈。4.利用反弹:在超卖区域(如RSI低于30)可考虑短暂做多反弹,但需谨慎。具体策略步骤:1.趋势判断:-计算200日移动平均线(MA200),当价格低于MA200且MA200向下倾斜时,认为处于熊市。2.入场信号:-主趋势方向(做空):当短期均线(如MA10)下穿中期均线(如MA50)时,开空仓。-反弹机会(谨慎做多):当RSI<30且价格反弹突破短期阻力位(如前一日高点)时,可轻仓做多,快进快出。3.出场信号:-空头出场:当价格上穿短期均线(如MA10)或达到预设的止损/止盈位时平仓。-多头出场:设置较小的止盈和止损,一旦获利及时平仓。4.资金管理:-固定手数交易,避免重仓。-总风险控制在每笔交易不超过账户资金的1%。 实现步骤(以Python和MQL5为例):1.数据获取:使用量化平台(如赫兹量化)获取历史数据和实时数据。 2.指标计算:计算移动平均线、RSI等指标。3.信号生成:根据上述条件生成交易信号。 4.执行交易:通过交易平台API执行买卖操作。 下面是一个简化的Python代码示例(仅用于说明逻辑,实际交易需更严谨): ```pythonimport pandasas pdimportnumpy asnpdef calculate_ma(data, window):return data['close'].rolling(window=window).mean()def calculate_rsi(data,window=14):delta= data['close'].diff()gain =(delta.where(delta>0,0)).rolling(window=window).mean()loss= (-delta.where(delta<0,0)).rolling(window=window).mean()rs =gain /lossreturn100- (100 /(1+rs))#假设data是包含日期和收盘价的DataFrame#步骤1:计算指标data['MA200']= calculate_ma(data,200) data['MA50'] =calculate_ma(data,50)data['MA10'] =calculate_ma(data,10)data['RSI'] =calculate_rsi(data,14) #步骤2:生成信号data['bear_market']= (data['close']< data['MA200'])& (data['MA200'].diff() <0)data['short_signal']= (data['MA10'] <data['MA50']) &(data['MA10'].shift(1)>= data['MA50'].shift(1))& data['bear_market'] data['long_signal']= (data['RSI'] <30) &(data['close'] >data['high'].shift(1))& data['bear_market'] #步骤3:模拟交易(简化版)positions =[]#记录持仓fori inrange(1,len(data)):#做空信号ifdata['short_signal'].iloc[i]:positions.append(('short', data['close'].iloc[i]))#做多信号(反弹)elif data['long_signal'].iloc[i]:positions.append(('long',data['close'].iloc[i]))#平仓逻辑(这里简化,实际需要跟踪持仓)#...#后续需要根据出场信号平仓,并计算盈亏```注意事项:-:使用历史数据,覆盖不同熊市阶段(引用[4]强调的重要性)。-优化:根据结果调整参数,但避免过度拟合。-实盘:在模拟盘试后,再投入实盘。 在赫兹量化平台中,我们可以使用MQL5实现类似策略,并利用其内置的熊市力量指标(如`iBearsPower`)来增强策略。 §§相关问题§§1.如何识别熊市开始和结束的信号? 2.在熊市中,哪些技术指标更有效?3.如何控制熊市策略的撤风险? 4.如何将熊市力量指标整合到量化策略中?5.在熊市策略中,如何平衡做空和捕捉反弹的机会?</think>### 适用于熊市的量化交易策略设计与实现 熊市行情以价格持续下跌、市场情绪悲观为特征,策略设计需聚焦**风险控制**和**下跌趋势捕捉**。以下是关键设计步骤: #### 一、核心策略框架 1. **趋势判断** - 使用三重确认判定熊市环境: $$ \text{熊市信号} = \left( \text{价格} < \text{MA200} \right) \land \left( \text{MA50} < \text{MA200} \right) \land \left( \text{ADX} > 25 \right) $$ (MA为移动平均线,ADX衡量趋势强度[^3]) 2. **做空信号生成** - **熊市力量指标**(Bears Power): $$ \text{BearsPower} = \text{Low}_t - \text{EMA}(\text{Close}, 13)_t $$ 当指标连续3期低于零轴且斜率向下时触发做空[^1] - **突破策略**:价格跌破布林带下轨($ \text{Close}_t < \text{BBLower}_t $)结合成交量放大 3. **动态止损止盈** ```python # 以ATR(平均真实波幅)动态调整 stop_loss = entry_price + 2 * atr # 空头止损在上方 take_profit = entry_price - 4 * atr # 盈利目标为风险2倍 ``` #### 二、关键风控机制 1. **仓位管理** - 单笔风险 ≤ 1%账户净值 - 熊市最大总仓位 ≤ 30%(引用[4]建议固定手数) 2. **波动率过滤** 当VIX指数 > 40时暂停交易,避免极端波动(引用[2]提及突发事件风险) 3. **多周期验证** 需同时满足: - 日线趋势向下 - 1小时图出现做空信号 - 15分钟图无超卖反弹迹象(RSI > 30) #### 三、代码实现(Python示例) ```python import talib def bear_market_strategy(data): # 1. 趋势判定 ma200 = talib.SMA(data.close, timeperiod=200) adx = talib.ADX(data.high, data.low, data.close, timeperiod=14) is_bear = (data.close[-1] < ma200[-1]) and (adx[-1] > 25) # 2. 信号生成 bears_power = talib.BOP(data.open, data.high, data.low, data.close) # 熊市力量指标 lower_band, _, _ = talib.BBANDS(data.close, timeperiod=20) short_signal = ( is_bear and (bears_power[-3:] < 0).all() and (data.close[-1] < lower_band[-1]) ) # 3. 仓位管理 if short_signal: atr = talib.ATR(data.high, data.low, data.close, timeperiod=14)[-1] entry_price = data.close[-1] stop_loss = entry_price + 2 * atr take_profit = entry_price - 4 * atr position_size = account_equity * 0.01 / (entry_price - stop_loss) # 1%风险 return { "action": "SELL", "price": entry_price, "stop_loss": stop_loss, "take_profit": take_profit, "size": position_size } return {"action": "HOLD"} ``` #### 四、策略优化方向 1. **熊市反弹捕捉** - 当RSI < 30且价格触及斐波那契0.786撤位时,轻仓做多(引用[5]) 2. **相关性对冲** - 做空高β股票同时做多防御性板块(如公用事业ETF) 3. **数据异常处理** ```python # 引用[4]提到的脏数据过滤 def clean_data(series): return series[(series < series.quantile(0.99)) & (series > series.quantile(0.01))] ``` > **关键注意事项**: > - 需覆盖2008、2020等典型熊市(引用[4]第9条) > - 避免在流动性不足的品种交易(引用[2]提及的局限性) > - 熊市力量指标需配合成交量验证(引用[1])
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值