NLP基本业务范围

本文探讨了NLP在文本纠错、掩蔽词语言模型、实体词识别、情感分析和文本摘要等领域的应用。重点指出,尽管有现成的库如huggingface,但关键在于模型的调整和微调。对于实体识别,主要关注位置、组织、人名和杂类四种类型。情感分析简化为词的正负标记,而文本摘要则是NLP中的一个重要任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,文本纠错(query纠错),可用于爬取的新闻资讯等进行预处理,去掉错别字、可用于搜索业务中query词纠错、可用于对话中的智能改错。中文相关的纠错paper

两个指标:过纠率(FAR,也就误报率),召回率

过纠率:正确的句子被改错的比率(FAR=正确句子被错纠的个数/正确句子个数);召回率:错误的句子被全部纠正的比率。较大的过纠率将会对系统和用户体验带来负面效果。因而,纠对句子数量远远大于被改错句子的数量,如果句子出错概率是K,则K*RECALL>>(1-K)*FAR。

github1,并不是说有了huggingface就可以拿来用,关键是在此基础上进行修改和设计模型,fine-tune,这才是水平和能力。

2,掩蔽词masked language model

from transformers import pipeline
unmasker = pipeline('fill-mask', model=
### 自然语言处理技术的最新进展与应用场景 #### 最新进展 自然语言处理NLP)已经从传统的逻辑规则发展到了现代的统计模型和深度学习方法。这一转变使得 NLP 可以更高效地解决复杂的语言理解问题[^1]。近年来,多模态预训练模型成为研究热点之一,这些模型能够同时处理多种类型的信息,例如文本、图像以及视频等。具体来说: - **Unicoder** 是一种用于跨语言理解和生成任务的有效工具; - **Unicoder VL** 主要针对视频片段及其对应的自然语言描述进行联合建模; - **CodeBERT** 则专注于代码相关的任务。 以上三种模型代表了当前多模态预训练领域的前沿成果,并且它们各自解决了特定领域内的挑战[^2]。 另外,在实际应用层面,一些新型框架也开始探索如何结合文本与其他形式的内容来增强用户体验。比如有一种基于 Transformer 的端到端模型 Divter,它可以通过独立预训练的方式分别完成文本回复生成和图片生成两项功能[^3]。 #### 应用场景 随着技术的进步,NLP 已经渗透进了多个行业并展现出巨大潜力。以下是几个典型的应用实例: 1. **医疗健康** “素问 GPT”是一款专门面向中医领域的大型语言模型,现已投入临床实践当中。它可以服务于各类康养场所、药店诊所以及其他关联产业,从而构建起全面的服务体系。不仅如此,“素问 GPT”还计划进一步拓展其适用范围,并支持个性化定制需求[^4]。 2. **商业智能** Fabarta 提供了一套完整的解决方案——即所谓的“以数据为核心”的 LLM 架构(Data-Centric LLM),旨在帮助企业利用大数据资源开发智能化应用程序。借助该公司的核心技术力量,客户可以轻松搭建属于自己的智能分析平台,进而推动业务模式转型与发展升级[^5]。 ```python # 示例代码展示了一个简单的文本分类器实现过程 from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB def train_text_classifier(corpus, labels): vectorizer = TfidfVectorizer() X_train_tfidf = vectorizer.fit_transform(corpus) clf = MultinomialNB().fit(X_train_tfidf, labels) return clf, vectorizer corpus = ["This is a sample sentence.", "Another example here."] labels = ['positive', 'negative'] clf, vec = train_text_classifier(corpus, labels) ``` 此段 Python 代码演示了如何使用 TF-IDF 向量化技术和朴素贝叶斯算法创建基本的文本分类器。尽管这是一个非常基础的例子,但它反映了传统机器学习方法在 NLP 中的基础作用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值