NLP基本业务范围之二

本文深入探讨NLP的基本业务,包括使用模型进行阅读理解,如SQuAD数据集的应用,以及文本生成任务,如因果语言模型和翻译。同时提到在某些任务中效果有待提升,但通过提示和背景信息能改善文本生成的质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面已经熟悉了相关博文,fastTEXT纠错/MLM/NER/情感分析/摘要,本文将继续介绍基本业务。

6,给定文本,做阅读理解题,也即Extractive Question Answering:extracting an answer from a text given a question 。相关数据集为SQuAD。

from transformers import pipeline
question_answerer = pipeline("question-answering")
context = r"""
Extractive Question Answering is the task of extracting an answer from a text given a question. An example of a
question answering dataset is the SQuAD dataset, which is entirely based on that task. If you would like to fine-tune
a model on a SQuAD task, you may lever
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值