有问题的找我哈,转载标明出处http://blog.csdn.net/ikerpeng/article/details/25027567
里面具体的图没有贴了,原理还是比较好理解的。需要的找我!
基于朴素贝叶斯的图片分类
摘要
图片分类问题是计算机视觉中比较常见的问题。图片分类在日常的生活中,以及图片搜索中等方面都有很多很实际的用途。如何准确快速有效的进行图片分类,提高图片分类的准确率和召回率是现在主要要解决的问题。因此一个好的分类学习的算法以及一个好的特征提取的方式是非常重要的。本文所采取的学习算法是朴素贝叶斯算法。这种算法的结构简单,同时对于简单的文字或是图片处理效果非常的好。特征提取的方式是提取图片的颜色直方图。也是具有简单易操作的特点。
关键词:图片分类,学习,贝叶斯, 特征提取
Abstract
Image classification is more popular and common in computer vision . Image classification, in everyday life, as well as in image searching, has a lot of practical application. How to perform accurate image classification quickly and effectively, and how to improve image classification precision and recall rate are now the main problem to be solved. Thus, a good learning classification algorithm and a good feature extraction is very important. Learning algorithm is adopted here is Naive Bayes algorithm. This algorithm has a simple structure, but the effect for simple text or image processing is very good. Feature extraction approach is to extract the image color histogram. Also has a advantage of simple and easy .
Keywords:Image classification, learning, Bayesian, feature extraction
1. 引言
机器学习算法在计算机视觉,语音识别,数据挖掘以及很多其他的人工智能领域有非常重要的意义。机器学习算法的研究和发展极大的推动了这些领域的发展。因此机器学习算法的研究具有非常重要的意义。机器学习的算法主要分为产生式和判别式模型。通俗的来讲,产生式模型就是要学习到一个联合概率分布。而判别式模型则不需要学习随机变量的概率分布。所以文章中用到的贝叶斯模型是一个产生式模型。最终是要求得一个随机变量的联合概率分布。
在图片文类或是文本分类当中,我们要从已知的数据集当中得到计算机能够理解的数据。这也就是提取特征的过程了。下面主要是针对图像特征的提取。图像特征的提取有很多种方式。比如说,HOG特征,颜色特征,haar特征,SIFT特征等等。HOG特征是对图片的梯度直方图进行统计;颜色特征则是对图片的RGB颜色进行记录,具有简单直观的特点;harr特征这是定义不同的矩形块里面的灰度差异来表征图片的特征,通过积分图像来计算的话,计算的速度还是非常不错的;SIFT特征具有很多的不变性,能够很好的表示出图片的特征,最终得到的是一个108维的特征向量,是通过DOG