【深度学习实验】线性模型(三):使用Pytorch实现简单线性模型:搭建、构造损失函数、计算损失值

本文介绍了如何在PyTorch环境下构建线性模型,包括定义模型、损失函数,以及使用随机权重和偏置计算损失。实验内容涉及数据准备和基本模型运行,但未涉及模型训练和优化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、实验介绍

 二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入库

1. 定义线性模型linear_model

2. 定义损失函数loss_function

3. 定义数据

4. 调用模型

5. 完整代码


 

 

一、实验介绍

  • 使用Pytorch实现
    • 线性模型搭建
    • 构造损失函数
    • 计算损失值

 

 二、实验环境

        本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16 
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

 

三、实验内容

ChatGPT:

 

        线性模型是一种基本的机器学习模型,用于建立输入特征与输出之间的线性关系。它是一种线性组合模型,通过对输入特征进行加权求和,再加上一个偏置项,来预测输出值。

        线性模型的一般形式可以表示为:y = w1x1 + w2x2 + ... + wnxn + b,其中y是输出变量,x1, x2, ..., xn是输入特征,w1, w2, ..., wn是特征的权重,b是偏置项。模型的目标是通过调整权重和偏置项,使预测值与真实值之间的差异最小化。

线性模型有几种常见的应用形式:

  1. 线性回归(Linear Regression):用于建立输入特征与连续输出之间的线性关系。它通过最小化预测值与真实值的平方差来拟合最佳的回归直线。

  2. 逻辑回归(Logistic Regression):用于建立输入特征与二分类或多分类输出之间的线性关系。它通过使用逻辑函数(如sigmoid函数)将线性组合的结果映射到概率值,从而进行分类预测。

  3. 支持向量机(Support Vector Machines,SVM):用于二分类和多分类问题。SVM通过找到一个最优的超平面,将不同类别的样本分隔开。它可以使用不同的核函数来处理非线性问题。

  4. 岭回归(Ridge Regression)和Lasso回归(Lasso Regression):用于处理具有多重共线性(multicollinearity)的回归问题。它们通过对权重引入正则化项,可以减小特征的影响,提高模型的泛化能力。

        线性模型的优点包括简单、易于解释和计算效率高。它们在许多实际问题中都有广泛的应用。然而,线性模型也有一些限制,例如对非线性关系的建模能力较弱。在处理复杂的问题时,可以通过引入非线性特征转换或使用核函数进行扩展,以提高线性模型的性能。

本系列为实验内容,对理论知识不进行详细阐释

(咳咳,其实是没时间整理,待有缘之时,回来填坑)

 

0. 导入库

import torch

 

1. 定义线性模型linear_model

        该函数接受输入数据x,使用随机生成的权重w和偏置b,计算输出值output。这里的线性模型的形式为 output = x * w + b

def linear_model(x):
    w = torch.rand(1, 1, requires_grad=True)
    b = torch.randn(1, requires_grad=True)
    return torch.matmul(x, w) + b

 

2. 定义损失函数loss_function

      这里使用的是均方误差(MSE)作为损失函数,计算预测值与真实值之间的差的平方。

def loss_function(y_true, y_pred):
    loss = (y_pred - y_true) ** 2
    return loss

 

3. 定义数据

  • 生成一个随机的输入张量 x,形状为 (5, 1),表示有 5 个样本,每个样本的特征维度为 1。

  • 生成一个目标张量 y,形状为 (5, 1),表示对应的真实标签。

  • 打印数据的信息,包括每个样本的输入值x和目标值y
x = torch.rand(5, 1)
y = torch.tensor([1, -1, 1, -1, 1], dtype=torch.float32).view(-1, 1)
print("The data is as follows:")
for i in range(x.shape[0]):
    print("Item " + str(i), "x:", x[i][0], "y:", y[i])

 

804b6f510bcd4d4ca1fce4f495d1afc1.png

4. 调用模型

  • 使用 linear_model 函数对输入 x 进行预测,得到预测结果 prediction

  • 使用 loss_function 计算预测结果与真实标签之间的损失,得到损失张量 loss

  • 打印了每个样本的损失值。
prediction = linear_model(x)
loss = loss_function(y, prediction)
print("The all loss value is:")
for i in range(len(loss)):
    print("Item ", str(i), "Loss:", loss[i])

 

48580842ec3e45ee8595b9ef19cf8f58.png

 

5. 完整代码

import torch

def linear_model(x):
    w = torch.rand(1, 1, requires_grad=True)
    b = torch.randn(1, requires_grad=True)
    return torch.matmul(x, w) + b

def loss_function(y_true, y_pred):
    loss = (y_pred - y_true) ** 2
    return loss

x = torch.rand(5, 1)
y = torch.tensor([1, -1, 1, -1, 1], dtype=torch.float32).view(-1, 1)
print("The data is as follows:")
for i in range(x.shape[0]):
    print("Item " + str(i), "x:", x[i][0], "y:", y[i])

prediction = linear_model(x)
loss = loss_function(y, prediction)
print("The all loss value is:")
for i in range(len(loss)):
    print("Item ", str(i), "Loss:", loss[i])

 


注意:

        本实验的线性模型仅简单地使用随机权重和偏置,计算了模型在训练集上的均方误差损失,没有使用优化算法进行模型参数的更新。

        通常情况下会使用梯度下降等优化算法来最小化损失函数,并根据训练数据不断更新模型的参数,具体内容请听下回分解。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QomolangmaH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值