Leetcode 813 Largest Sum of Averages (区间dp)

本文介绍了一种解决最大平均值分组问题的算法,通过动态规划方法实现了将数组分成最多K段,以达到各段平均值之和最大的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

We partition a row of numbers A into at most K adjacent (non-empty) groups, then our score is the sum of the average of each group. What is the largest score we can achieve?

Note that our partition must use every number in A, and that scores are not necessarily integers.

 

Input

A = [9,1,2,3,9]
K = 3

 

Output

20

 

题意

长度为 nn 的数组最多可分为 k 段,求分完以后每一段平均值和的最大值。

 

思路

因为数据很水的原因,就用最普通的做法咯~ ( 1<=n<=1001<=n<=100 )

dp[i][j][k]dp[i][j][k] 为区间 [i,j][i,j] 分为 kk 段所能得到的结果,则显然:

dp[i][j][k]=max(dp[i][j][k],dp[i][s][k1]+Sum(s+1,j)js)

其中 ss 为区间 [i,j] 之间的一个分割点,最终的结果:dp[0][len1][K]dp[0][len−1][K]

 

AC 代码

const int maxn = 1e2+10;
double dp[maxn][maxn][maxn];
int sum[maxn];
class Solution
{
public:
    int getSum(int x,int y)
    {
        return sum[y] - (x==0?0 : sum[x-1]);
    }
    double largestSumOfAverages(vector<int>& A, int K)
    {
        memset(sum,0,sizeof(sum));
        memset(dp,0,sizeof dp);
        int len = A.size();
        sum[0] = A[0];
        for(int i=1; i<len; i++)
            sum[i] = sum[i-1] + A[i];
        for(int i=0; i<len; i++)
            for(int j=i; j<len; j++)
            {
                dp[i][j][j-i+1] = getSum(i,j) * 1.0;
                dp[i][j][1] = getSum(i,j) * 1.0 / (j-i+1);
            }
        for(int k=2; k<=K; k++)
            for(int i=0; i<len; i++)
                for(int j=i + k - 1; j<len; j++)
                    for(int s = i; s < j; s++)
                        dp[i][j][k] = max(dp[i][j][k],dp[i][s][k-1]+getSum(s+1,j) * 1.0 / (j-s));
        return dp[0][len-1][K];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值