University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

12-201S8

Optimizing the Resource Requirements of
Hierarchical Scheduling Systems

Jin Hyun Kim

jin-hyun kim@inria.fr

Axel Legay
axellegay@inria.fr

Louis-Marie Traonouez

louis-marie.traonouez@inria.fr

Abdeldjalil Boudjadar
abdeldjalil boudjadar@liu.se

Ulrik Nyman
ulrik@cs.aau.dk

See next page for additional authors

Follow this and additional works at: http://repositoryupenn.edu/cis_papers

b Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Jin Hyun Kim, Axel Legay, Louis-Marie Traonouez, Abdeldjalil Boudjadar, Ulrik Nyman, Kim G. Larsen, Insup Lee, and Jin-Young
Choi, "Optimizing the Resource Requirements of Hierarchical Scheduling Systems", 8th International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (CRTS 201S) . December 2015.

8th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2015) held in conjunction with 36th

IEEE Real-Time Systems Symposium (RTSS 2015), San Antonio, Texas, December 1-4, 2015

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/cis_papers/817

For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.mrtc.mdh.se/CRTS2015/
http://www.rtss.org/
http://repository.upenn.edu/cis_papers/817
mailto:repository@pobox.upenn.edu

Optimizing the Resource Requirements of Hierarchical Scheduling
Systems

Abstract

Compositional reasoning on hierarchical scheduling systems is a well-founded formal method that can
construct schedulable and optimal system configurations in a compositional way. However, a compositional
framework formulates the resource requirement of a component, called an interface, by assuming that a
resource is always supplied by the parent components in the most pessimistic way. For this reason, the
component interface demands more resources than the amount of resources that are really sufficient to satisfy
sub-components. We provide two new supply bound functions which provides tighter bounds on the resource
requirements of individual components. The tighter bounds are calculated by using more information about
the scheduling system.

We evaluate our new tighter bounds by using a model-based schedulability framework for hierarchical
scheduling systems realized as Uppaal models. The timed models are checked using model checking tools
Uppaal and Uppaal SMC, and we compare our results with the state of the art tool CART'S.

Disciplines
Computer Engineering | Computer Sciences

Comments

8th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems
(CRTS 2015) held in conjunction with 36th IEEE Real-Time Systems Symposium (RTSS 2015), San
Antonio, Texas, December 1-4, 2015

Author(s)
Jin Hyun Kim, Axel Legay, Louis-Marie Traonouez, Abdeldjalil Boudjadar, Ulrik Nyman, Kim G. Larsen,
Insup Lee, and Jin-Young Choi

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/817

http://www.mrtc.mdh.se/CRTS2015/
http://www.rtss.org/
http://repository.upenn.edu/cis_papers/817?utm_source=repository.upenn.edu%2Fcis_papers%2F817&utm_medium=PDF&utm_campaign=PDFCoverPages

Optimizing the Resource Requirements of
Hierarchical Scheduling Systems

Jin Hyun Kim, Axel Legay
INRIA/IRISA, FRANCE
jin-hyun.kim@inria.fr

axel.legay@inria.fr

Ulrik Nyman,

Kim G. Larsen
Aalborg University, DENMARK

{ulrik,kgl}@cs.aau.dk

ABSTRACT

Compositional reasoning on hierarchical scheduling systems
is a well-founded formal method that can construct schedu-
lable and optimal system configurations in a compositional
wa,y] However, a compositional framework formulates the
resource requirement of a component, called an interface,
by assuming that a resource is always supplied by the par-
ent components in the most pessimistic way. For this reason,
the component interface demands more resources than the
amount of resources that are really sufficient to satisfy sub-
components. We provide two new supply bound functions
which provides tighter bounds on the resource requirements
of individual components. The tighter bounds are calculated
by using more information about the scheduling system.

We evaluate our new tighter bounds by using a model-
based schedulability framework for hierarchical scheduling
systems realized as UPPAAL models. The timed models
are checked using model checking tools UPPAAL and Up-
PAAL SMC, and we compare our results with the state of
the art tool CARTS.

1. INTRODUCTION

In order to reduce the system cost, in the design of mod-
ern automotive systems, a manufacturer devotes strong ef-
forts to maximize the number of components that can be
integrated on a given platform. This can be achieved by
minimizing the resource requirements of individual compo-
nents.

A hierarchical scheduling systems (HSS) integrates a num-
ber of components into a single system running on one exe-
cution platform. Hierarchical scheduling systems have been
gaining more attention by automotive and aircraft manufac-
turers because they are practical in minimizing the cost and
energy of operating applications [12] [7].

A class of analytical methods has been developed to ana-
lyze hierarchical scheduling systems [I5] [14]. An interface of
a component in an HSS is also a resource requirement spec-
ification of the component workload and the schedulability
of components is checked in a compositional manner.

Due to their rigorous nature, analytical methods are easy
to apply once proven correct, but proving the correctness
of a new analytical method can be very difficult. However,

Copyright retained by the authors.

Louis-Marie Traonouez
INRIA/IRISA, FRANCE
. Louis-
Marie.Traonouez@inria.fr

Insup Lee
University of Pennsylvania,
USA

Abdeldjalil Boudjadar
Linkdping University,
SWEDEN
abdeldjalil.boudjadar@liu.se

Jin-Young Choi
Korea University, S. KOREA
choi@formal.korea.ac.kr

lee@cis.upenn.edu

they also suffer from the abstractness of the models; they
do not deal with any detail of the system behavior and thus
grossly overestimate the amount resources needed. Such an-
alytical methods consider all potential cases of components
interleaving. For this reason, it has not been possible to
find a real minimal requirement of resources that is satisfi-
able for a workload of a given component in a compositional
framework.

Model-based methodologies for schedulability analysis [5]
7] allow modeling more detailed and complicated behavior
of the component workload (individual tasks), relative to
the analytical methods while powerful analysis tools can be
applied. Our previous work [3, 4] introduced a model based
methodology for the schedulability analysis of hierarchical
scheduling systems. Unfortunately, such work relies also on
the pessimistic fact of analytical methods and compositional
reasoning. The models can be quickly analyzed using sta-
tistical methods (UpPAAL SMC), which provide guarantees
with a selected statistical margin. Once a satisfying model
design has been found, the model can be analyzed using
symbolic model checking (UPPAAL).

This paper uses a methodology for optimizing the resource
requirement (interface) of a component, in the context of
hierarchical scheduling systems, using model checking tech-
niques. Our methodology consists of using a light weight sta-
tistical model-checking method (SMC) and a costly but ab-
solute certain symbolic model-checking method (MC) that
operates on identical models.

The current paper extends our previous work [3 [4] by
exploiting a new model of HSS that captures all compo-
nents together in order to make it possible to explore their
actual behavior where every possible interleaving of com-
ponents can be captured explicitly. Basically, we generate
the initial component interfaces using a state of the art tool
CARTS [14] then apply our new framework to optimize the
interfaces. Design space exploration is carried out at low
cost using SMC in order to determine more optimal sys-
tem parameters, that could be impossible to calculate us-
ing analytical methods. Afterwards, the candidate compo-
nent interface proposed by SMC goes under analysis using
a model-checker to obtain absolute certainty.

The main contribution of the paper is the introduction
of two new supply bound functions which more tightly esti-
mates the resource requirements of components in a hierar-

Schedulabilty Test J
Interface)

Optimization J

‘ o
: ——
—

Y

-
S
N

\1
>
o
o

Figure 1: Optimization and schedulability check

chical scheduling system.

Moreover, using a model-based methodology also has the
advantage that it is possible for system engineers to update
the models in order to have a more detailed and realistic
analysis of the system, such as overhead. In this way, en-
gineers can utilize specific and detailed knowledge of the
system that they are working with; something that cannot
be achieved with a classical analytical approach.

The compositional framework of an HSS requires two steps:
formulating the component interfaces and checking the schedu-
lability. In the classical methods, both steps are given for
a component in a fully compositional way, resulting in pes-
simistic results. To tighten resource requirements of a com-
ponent, we utilize information of the upper level compo-
nents, as shown in Figure [l

Our technique is not a fully compositional way but a par-
tially compositional way when optimizing individual com-
ponents because it uses the information of sibling tasks of a
task instantiating a resource model, as shown in Figure [l
However, it is fully compositional when checking the schedu-
lability of a component against an interface using our previ-
ous work [3] [4]

For the schedulability test, we provides two new supply
bound functions extending the classical one[I6] (Section [B]).
For the optimization of an HSS, we use model checking tech-
niques, SMC and MC (Section]). Our optimization is based
on an HSS evaluated by the classical tool of the composi-
tional framework, CARTS[I4]. Starting from the button
components of an HSS, as shown in Figure [l each compo-
nent is re-evaluated by SMC, a small hammer, to optimize
resource requirements, exploring behaviors of all necessary
components interleaving with the component under analy-
sis without the state-explosion problem. SMC automatically
searches for the minimum budget of a given component and
returns results even though it takes numerous time. How-
ever, it does not guarantee 100% certainty of schedulability.
For this reason, the resource requirement evaluated by SMC
is then verified by MC, a big hammer, to obtain 100% cer-
tainty of schedulability.

The rest of the paper is organized as follows: Section
presents the necessary background. Section [3] presents our
new and tighter supply bound functions. Section[dlevaluates
our supply bound functions in the setting of a model-based
hierarchical scheduling framework. Section [0 describes the
most relevant related work and finally Section [6] concludes
the paper.

2. PRELIMINARIES

In this section, we present the necessary background of
our work, i.e. Stopwatch automata and the theory of hier-
archical scheduling systems.

2.1 Stopwatch Automata

Stopwatch automata [6] are a subclass of linear hybrid au-
tomata. Basically, a stopwatch automaton is a regular timed
automaton augmented with stopwatches. A stopwatch is a
continuous variable (clock) that can stop and resume with-
out necessarily performing a reset. This is done by assigning
to such clocks a progress rate of 0 or 1, i.e. technically the
derivative of the stopwatch is assigned to a constant or an
expression which evaluates to 0 or 1, so that the stopwatch
progresses with the same rate as logical time. The expres-
sion assigned to a stopwatch derivative can be a condition
on other variables. Such an expression will be evaluated on-
the-fly according to the dynamics characterizing each state,
every time the condition is evaluated to 1 the stopwatch
starts progressing until either the condition is determined
to be 0 or encountering a reset.

An important result on the expressiveness of stopwatch
automata is that any behavior (accepted language) expressed
by a linear hybrid automaton can also be specified using
stopwatch automata [6].

Let X be a finite set of continuous variables. A wvariable
valuation over X is a mapping v : X — R, where IR is the set
of reals. By default, all continuous variables are initialized
to 0 (initial value). We write R™ for the set of valuations
over X. Valuations over X evolve over time according to
delay functions F' : R>o X R* — R¥, where for a delay d
and valuation v, F(d,v) provides the new valuation after a
delay of d. As is the case for delays in timed automata, delay
functions are assumed to be time additive in the sense that
F(dy, F(dz2,v)) = F(d1+d2,v). To allow for communication
between different stopwatch automata, we assume a set of
actions X, which is partitioned into disjoint sets of input and
output actions, i.e. X = 3; W X,.

DEFINITION 1. A Stopwatch Automaton (SWA) S is a
tuple S = (L, 0o, X, %, E,F,I), where: (i) L is a finite set
of locations, (it) Lo € L is the initial location, (%i) X is a
finite set of continuous variables, (iv) ¥ = X; W, is a finite
set of actions partitioned into inputs (3;) and outputs (Xo),
(v) E is a finite set of edges of the form (£,g,a,$,l'), where
2 and €' are locations, g is a predicate on RX, action label
a €% and ¢ is a binary relation (update) on RX, (vi) for
each location ¢ € L F({) is a delay function, and (vii) I
assigns an invariant predicate 1(£) to any location £.

The semantics of a SWA S is a timed labeled transition
system, whose states are pairs (£,) € LxIR* with v |= I(¢£),

and whose transitions are either delay transitions (¢, v) N
(¢,v") with d € R>o and v’ = F(d,v), or discrete transitions
(6,v) -2 (¢,0) if there is an edge (£, g, a,¢,£) such that
v E g and ¢(v,v'). We write (£,v) ~ (£',v') if there is a
finite sequence of delay and discrete transitions from (¢,v)
to (¢',v).

In the above definition, the clock rate in a location £ may
be either 2’ = 1 or 2’ = 0 (the latter to be annotated ex-
plicitly). In order to ensure decidability and efficiency of
over-approximation techniques, guards g and invariants [
are restricted to conjunctions of simple integer bounds on

individual clocks, and the update predicate are simple as-
signments of the form x = e, where e is an expression only
depending on the discrete part of the current state.

Throughout this paper, we consider stopwatch automata
with both continuous (clocks) and discrete variables. The
initial values of all variables can be user-provided as param-
eters, and not necessarily be the default values.

2.2 Compositional Framework for HSSs

| —@>—

[Tl(loo, 35)} [7,(100, 32) }

T T
p
J}%‘P

1,(100, 35) 1,(100,32)
1

{TJ(ZSO, 30)] [T4(450,45) { T,(750,50) |

{75(150, 20) [T,(550, 50)] (7850, 75)}

Figure 2: A hierarchical scheduling system

Formally, a hierarchical scheduling system (HSS) S is de-
fined as a set of scheduling components (units). A schedul-
ing unit C(W, A) is composed of a workload W a set of
tasks, and a scheduling algorithm A. A task T;(p,e,d) is
characterized by inter-arrival time (p;), execution time (e;),
and deadline (d;). An inter-arrival time can be the same as
the deadline, which is called implicit deadline. This paper
uses implicit deadlines as long as deadlines are not explicitly
specified. For a given component, its collective resource re-
quirement is represented by an interface (I;). A task that a
sub-component relies on is called a resource model I'; (T'ask1
and Taskz in Figure), such that the component can exe-
cute only when the task executes.

Figure [2] shows an HSS, where components are organized
in a parent-child relationship making a hierarchy. Individual
components consist of one or more tasks. A child compo-
nent requires certain amount of resources from its parent
component via its interface, which is a collective resource
requirement of the child component. A parent component
executes, regardless of child components connected to its
tasks, i.e. it does not synchronize with its child components.
In other words, a parent component can execute even though
no child one executes, and vice versa.

The schedulability test for an HSS can be performed in a
compositional way. A child component requires its parent
component to provide a specific amount of resources through
an interface, and the schedulability of individual compo-
nents, except the root component, is checked by verifying
whether their interfaces are satisfied by the corresponding
resource models. The root component is checked by the
classical schedulability test methods.

Note that the classical compositional frameworks for HSSs
provide a way of decomposing the schedulability analysis.
However, that costs some over-approximation because re-
source models are designed to consider the worst-case re-
source supply assuming all preemptions.

In our previous work [3| 4], we provided a model-based
compositional framework that relies on a formal model of
HSSs. So that each scheduling unit can be individually in-

vestigated w.r.t. aresource model that instantiates a resource-

supplying task respecting an interface. Thus, our previous

work do not return more optional resource requirements of
a component while a model of workloads is flexible enough
to encompass any settings of HSSs.

i
le 1 1 _ 1
- @ |- e - A <E -
[[[|
| | [[{ | | [I [
¥
e . .
t—(I1-6
| ()J~®

Figure 3: Resource supply pattern

In the classical frameworks, a resource model is repre-
sented by a supply bound function (sbf) and resource re-
quirements of a child component is estimated by a demand
bound function (dbf). An interface I of a component sat-
isfiable for the workload of that component is computed by
the relation between dbf 4(W,t) and sbfr(t) depending on
the resource model I', where dbf 4(W,t) returns an amount
of resources that are demanded by a workload for a time in-
terval t and sbfr(t) returns an amount of resources supplied
by the resource model I' for a time interval .

The Periodic Resource Model (PRM) proposed by Shin et
al., in [16] [15], assigns a particular amount of resources every
specific period. An interface observing the PRM consists of
two attributes, a period and a budget, and is computed by
searching for a resource model (T") that satisfies the following
schedulability condition:

Y0 <t <2-LCM, dbfa(W,t) < sbfr(t) (1)

where ¢ is a time interval, and LC M), is the least common
multiplier of periods of all the tasks in W.

The supply bound function sbfpra(t) of a PRM is de-
fined by:

sbf pra () = {#J Ote (2
e :max(t_z(n_@)_n{ﬁ]o) 3)

For the conservative analysis, PRM assumes that the max-
imum service time (MST, ¥ in Figure [3]) between two com-
pletions of the resource supplies is 2(II — ©) + © = 2II — O,
and the MST of a component in an HSS varies according
to the preemption caused by other components. This paper
finds a more realistic MST to optimize HSSs.

For the scheduling policies EDF (Earliest Deadline First)
and RM (Rate Monotonic), the demand bound functions are
respectively defined by:

abfepr(W,t) = Y {LJ € (4)

Tiew LPi
t
_ e 5
M . (5)

where HP(i) is a set of tasks whose priorities are higher
than that of T;.

dbf par (W, t,1) = e; + Z
Ty € H Py (1)

3. TIGHTER SUPPLY BOUND FUNCTIONS

This section presents a metrics that can be used to deter-
mine the capability of a resource model’s supply. In addi-
tion, for the schedulability check, we present two new supply
bound functions that can gain more resource assignments
from a resource model.

3.1 Maximum Service Time

Let ©; and II; be the execution time and period of a
resource-supplying task T;. In case of the classical PRM (pe-
riodic resource models), the maximum service time (MST)
is always 2(I1; — ©;) + ©; = 2I1; — O; regardless of scheduling
policy.

For a given resource model, the MST denoted by ¥ in
Figure [3 is the maximum interval between two completions
of the resource supply. In fact, the MST of a resource model
depends on its realizing (server) task, whose the execution
can be intervened by the sibling tasks of the server task, in
the same component, and the resource model on which the
component relies.

For instance, the resource model I's in Figure [Ilis associ-
ated with the task T3, the MST of I's thus depends on T5.
The execution of T3 can be preempted by T4 and/or Ts and
stops/resumes by the resource model I'y. For a given PRM
I'(I1, ©), the MST is computed by:

1
MSTy = ([M-©)+r+ 3 [—]ewe (6)
T cHP() | Pk
1|
= T+x+ > ’V——‘-ek (7)
T,cHP(:) | Pk

where A is a delay that is caused by the resource model that
the component of T; relies on, and H P(i) is the set of tasks
whose priorities are higher than the priority of task 7;, and
T; is the task to which I' is associated.

Note that A depends on the component that the resource
model relies on, thus it is necessary to require more informa-
tion from the upper level component to tighten the MST.

Put simply, if we can find a more tighter MST of a resource
model by exploiting the information of the task instance of
the resource model, it is possible to tighten the resource
requirements of a resource-supplied component while keep
it schedulable.

3.2 Supply Bound Function for RM

Based on the above observation of the MST, we refine
the supply bound function of [16] with the information on
the component encapsulating the task that instantiates a
resource model: sibling tasks of the task, a scheduling algo-
rithm and a resource model of the component.

For a given PRM I'(II, ©), let T; be a task of the compo-
nent C instantiating I' with inheriting the same parameters
Of Ti.

For the RM scheduling algorithm, the supply bound func-
tion (sbf) of the resource model depends on T; that is in-
cluded by the workload W of C employing the RM schedul-
ing algorithm. The sbf is defined by:

t—(Hi—@

sbfr(r, . w,ra) () = { o i)J O + es 8)
1

20 T T T T T T TT

Classical SBF for 1(45,5)
— Refined SBF for T2(45,5) with T1(25,5) and T3(75,5) depending on RM

Resources

) 20 40 60 80 100 120 140 160 180 200
Time

Figure 4: Comparison of supply bound functions

where
es = maz(min(®,O;),0))
T-A, if C' is the root
¢ = sbfrrraw (1) (10)
= 2T e HP() !—Hlk] - O, otherwise
T = t—(Hi—@i)_n{MJ (11)
I1;
T
A = Z ’7_—‘ - O (12)

Ty, €HP(i) I,

where HP(i) is the set of tasks with higher priorities over
that (pris) of T;. sbfparew is a resource supply that is pro-
vided by the component that C' depends on, and ¢ is a time
duration. T of Eq.[IIlis the remaining time of ¢ that is less
than the period II, as shown in Figure[3l For T time units,
the amount of resources supplied by this resource model can
be in one of two cases: In the first case where the resource
model is running in the root component, the amount of re-
sources provided by the resource model is the deduction of A
from T, where A of Eq[I2is, as shown in Figure 3l the pre-
emption time of T; by T) whose priorities are higher than
T;’s. In the second case where the resource model is not
running in the root component, the amount of resources is
computed by Eq. [I0 that is the deduction of resources pre-
empted by higher priority tasks from resources given by its
parent task for the time T.

If a task instantiating a resource model is located in the
root component, €; depends only on the sibling tasks of T;.
Otherwise, €s depends on both the sibling tasks and the
resource model that the child component relies on.

EXAMPLE 1. For the root resource-supplying component

C = T1(25,3),712(45,5),T4(75,5), Figure [J] compares the
classical and refined supply bound functions of task T2(45,5).

3.3 Supply Bound Function for EDF

Our supply bound function for EDF policy over-approximates

the delay caused by the sibling tasks of the task instantiat-
ing a resource model because of the non-determinism of task
priorities according to the EDF.

The maximum amount of resources demanded by tasks
scheduled according to EDF can be computed by the de-
mand bound function proposed in [I].

For a given time duration ¢ and a workload W, the pre-
emption time of a task T} by its sibling task T} according to
the EDF can be computed by the demand bound function of
[I] excluding T; from W as follows:

dofpprr,w)t) = > TH—J Oy (13)

Tew Lk
, where T3, T, € W,i # k

For a given time duration ¢, the sbf depending on T;(I1;, ©;)

scheduled by EDF is:

t— (II; — ©;
sbfr(r, w,eDF)(t) = {%J ‘O +es (14)
1
where
es = maz(min(®,O;),0) (15)
T-—A, if C' is the root
P _ SbeHIGH (T) (16)
— Yrew \‘%J -©p otherwise
t— (1L -6,
T = t— (Hi — @i) —II; \‘%J (17)
T
A = — |- 1
2 {HkJ O (8
T eW

and T3, T, € W,i # k

Note that the difference between the sbf for EDF and the
one for RM is that the preemption time by sibling tasks is
computed using the dbf in Eq. I3l

4. MODEL-BASED EVALUATION

Although the new supply bound functions presented in
the previous section can be used on their own, we in this
section intend to evaluate them in the setting of a model-
based hierarchical scheduling framework.

We introduce a novel model of an HSS in order to opti-
mize component resource requirements. Indeed, our model
of an HSS verifies even more tight resource requirements
of a component. It is because our model of an HSS sim-
ulates the actual HSS with all necessary information of a
resource-supplying component that influences the execution
of a component.

4.1 Stopwatch Automata Model of HSSs

Our model of HSSs consists of one task template (model)
and two scheduling mechanism templates. A process of the
task model behaves as a periodic task if it belongs to a leaf
component of an HSS. A process representing a task, within
a parent component, controls a component that would be
served by that task.

Figure [l shows the SWA template of the task tid. It has
five locations where the time can progress: DlylOffset, Ready,
Executing, JobDone, and MissingDeadline. When the initial job
is released, there is a delay at location DlylOffset for a time of
the constant tstat[tid].ioffset. Afterwards, the task moves to
the location Ready and asks for a CPU resource by sending
a request event req sched[tstat[tid].cid] to the relevant sched-
uler. If the task is allowed to use a CPU i.e. the function
isSched() returns 1, it joins the location Executing. At that lo-
cation the task can execute, i.e. the stopwatch clock t et[tid]
can progress, only when that a CPU resource is available to
it. The execution of task tid is denoted by the progress of the
stopwatch clock t_et[tid] bounded by BCET and WCET.The
availability of a CPU resource is denoted by the function isS-
chedSuped() that is manipulated by the associated scheduler.

nic DlylOffset

setTaskAttribute(),x=0
@ O x<=tstat[tid].ioffset
&& t_etftid]'==0

x>=tstat[tid].ioffset
JobDone
t_rt[tid] >= tstat[tid] prd/(‘:\
_
t_rt[tid] <= tstat[tid].prd
&& t_rp[tid]'==0
&& t_et[tid]'==0

req_sched|tstat[tid].cid]!
t_rt[tid]=0, t_et[tid]=0,
x=0, t_rp[tid]=0,
tstat[tid].status = READY,
enque_tid(tstat[tid].cid, tid)
MissingDeadline

t_et[tid] >= tstat[tid].bcet O
deque_tid(tstat[tid].cid, tid),

tstat[tid] status = WAITING t_rt[tid] > tstat[tid].deadline

error = true,
tstat[tid].status = MISSDLINE

Executing isSched(tstat[tid].cid, tid) Read
) urgentdrive! yr

_J tstat[tid].status = \sSchedSuped(tstat[tid].&D,t\d)
t_et[tid]'==0

10000
t_et[tid]'== isSche¢lSuped(tstat[tid].cid, tid)
&& t_et[tid] <= tstat[tid].wcet

tstat[tid].status != isSchedSupgd(tstat[tid].cid, tid)
urgentdrive!
tstat[tid].status = isSchedSuped(tstat[tid].cid, tid)

Figure 5: A task model in SWA

In short, the clock t_et[tid] grows only when the task tid is
scheduled to use a CPU resource and isSchedSuped() returns
1. If the BCET is satisfied, the task can leave the location
Executing, but it cannot stay longer than the WCET. When
the task leaves that location, it releases the CPU resource
using the function deque_tid(). When the task joins location
JobDone, then it finishes one period. When the deadline is
reached at location Executing, the task joins the location Miss-
ingDeadline with reporting its missing deadline by setting the
global variable error to true.

838 I L1 n
6.6|
| g | | 'L |5 trunningt2)
2 4.4 - trunning[1] + 2
2 E trunning[3] + 4
>2.2| E trunning(4] + 6
E trunning(5] + 8
o IS I N N S o
0 120 240 360 480 600 720 840 960

Figure 6: Simulation of the running example

Figure [6lshows a simulation result of the running example
of Figure The first and second graphs from the bottom
show the executions of 7% and Th, respectively. The third to
the fifth show the executions of T3, T4 and Ts respectively.
Notice that the executions of T» and 77 interleave with each
other, but the executions of T3, T4 and Ts are clearly de-
pendent on the execution of T4, i.e. their running is only
permitted when T3 is scheduled.

4.2 SWA Model for Interface Optimization

To find out the minimum execution time of a parent task
that enables a child component to be schedulable, we provide
two extra templates (Figure [T]).

The task model of Figureis an extension of the origi-
nal task model of Figure[Bland shows only the difference with
the original task model of Figure Bl It adds to the original
one a stochastic transition between the locations Init and
DlyOffset that varies execution times of a parent task while
checking if its child tasks miss deadlines. Compared to the
task model of Figure B the task model of Figure [7 picks up
an execution time (on the dotted edge) when the task is in-
stantiated as a process. SMC repeats the simulation of the
model to generate traces and finds out a bound of the execu-
tion time that leads child tasks to miss deadlines. The model

valya_000
Text Box

valya_000
Text Box

estimatedbudget = i,
tstat[tid].bcet = tstat[tid].wcet = i

Init
DlylOffset
x<=tstat[tid].ioffset
&& t_et[tid]'==0
JobDone
t_rtltid] >= tstat[tid].prd

t_rt[tid] <= tstat[tid].prd

&& t_rst[tid]'==0

&& t_et[tid]'==0

t_rt[tid]=0, t_et[tid]=0,
x=0, t_rst[tid]=0,
tstat[tid].status = READY,
enque_tid(tstat[tid].cid, tid

(a) A task model with a random execution time

O

globalTime>= runTime

globalTime<=runTime
&& estimatedbudget'==0

(b) Simulation Finalizer

Figure 7: Requirement estimating processes

of Figure collaborates with the following SMC query to
generate a probability distribution that shows a time bound
where the schedulability of child tasks is violated.

PrlestimatedBudget <= runTime]

(<> globalTime >= runTime and error)

where a clock variable estimatedBudget denotes a sample of
the execution time for each trace. The condition variable
error indicates that the schedulability is violated.

Given the above query and SWA models of Figure[7] SMC
generates a probability distribution in terms of the vari-
able estimatedBudget, showing probabilities of violating the
schedulability for a given sample value of estimatedBudget.

According to the probability distribution, the least execu-
tion time (of a parent task) that is greater than the upper
bound of the execution time disproving the schedulability is
selected as the minimum execution time of the parent task
that enables child tasks to be schedulable. The minimum
execution time would then be analyzed using model check-
ing (MC) to see whether this can be proven to be a sufficient
budget.

Probability Distribution

S 0.08| [l probability
2
$0.04 E- average

[

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
estimatedbudget
Parameters: «=0.05, €=0.05, bucket width=4.125, bucket count=9
Runs: 54 in total, 53 (98.148%) displayed, 1 (1.8519%) remaining
Span of displayed sample: [1, 34]
Mean of displayed sample: 15.8301886792453 + 2.63145712560124 (95% CI)

Figure 8: A probability distribution for the execu-
tion time of T; of Figure

Figure [§] shows the probability distribution for the execu-
tion times of task 71 (Figure[2) that cause the child tasks of
C'1 to miss their deadlines. It shows that the values between
[0,34] of the span of the displayed sample lead tasks (at least
one task) to miss deadlines, we thus conclude that 35 is the
minimum budget that can satisfy child tasks. All runs that
do not miss a deadline are not included in the plot and thus
only 82.305% of the runs are included in the plot.

4.3 Optimization of HSSs

a5

40

35

5 30
g 25
@
S 2 ~—&—SMC
g ——MC
g B CARTS
o4

10

5

0

50 60 70 80 920 100

Figure 9: Sufficient resource requirements of inter-
face I, (in Figure [2)) for different periods.

Our optimization is conducted in a compositional manner,
starting from the interfaces of components as computed by
the CARTS tool. As shown in Figure [l the optimization
starts from the bottom components by exploiting the infor-
mation of a child component and its parent component.

Figure [@shows the estimated results of interface I (Fig-
ure[2) obtained by CARTS, SMC and MC when varying the
period.

Table 1: Comparison of resource requirements

Interface ID. | Interface ID. Croot
‘ Sched. Alg ‘ Sched. Alg ‘ Sched. Alg ‘

Configuration 1la 1,(100,39) 15(100,35) (EDF)
(CARTS) (RM) (EDF)

Configuration 1b 1,(100,35) 15(100,32) (EDF)
(MC) (RM) (EDF)

Configuration 2a [11(100,39) 1>(100,35) (RM)
(CARTS) (RM) (EDF)

Configuration 2b | 1;(100,33) 15(100,32) (RM)
(MC) (RM) (EDF)

Configuration 3a [11(100,31) 1>(100,35) (RM)
(CARTS) (EDF) (EDF)

Configuration 3b | 1:(100,30) 1>(100,32) (RM)
(MC) (EDF) (EDF)

Table [Tl exhibits the optimized interfaces of Figure [2] that
are proven by MC and the comparison with the outcomes of
CARTS. Each pair, e.g. (1a, 1b), uses the same scheduling
algorithms for different components. The choice of schedul-
ing algorithms for each configuration pair is arbitrary.

Observation 1.

Using EDF in child components always requires less re-
sources than using RM, which is well known. However, as
shown in Configurations 1b and 2b in Table [I] the resource
requirements of child components can be tightened by vary-
ing the scheduling algorithm of the root component Cioot.
In other words, using RM in the parent component can make
the child components requiring less resources compared to
the case when EDF is used in the parent component.

In the case where Cyo0r uses RM and T3 has higher priority
than T2, the MST of the resource model instantiated by T3
is 100, and the MST served by T3 is also 100. When the
root component Choot uses EDF, T} and T> have the same
priorities all the time because they have the same implicit
deadlines. Therefore, the MST instantiated by 77 is 133,
and the MST served by 75 is 135. Thus, the MST of EDF
varies more than that of RM.

Table 2: The analysis times of SMC and MC

Period 50 60 70 80 90 100
SMC(sec) | 20.04 33.78 32.87 29.98 25.87 5.15
MC (sec) | 228.77 | 184.87 | 503.51 | 145.27 | 129.13 | 350.7

Observation 2.
To check how much resources the explicit deadline can
save [8], we varied the deadline of task 77 and found the

necessary budgets satisfying the interface I; as shown int
Table Bl and [l

Table 3: The satisfying budgets of I, varied by the
deadline of 71 scheduled using EDF

Periods 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Deadlines | 100 | 99 | 98 | 95 | 90 | 50 | 35 33

Budgets 35 | 33 | 33 | 33 | 33 | 33 | 33 | 33

Table 4: The satisfying budgets of I, varied by the
deadline of 71 scheduled using RM

Periods 100 | 100 | 100
Deadlines | 100 | 65 33
Budgets 33 33 33

In the case of EDF, the satisfying budget could be reduced
from 35 to 33 by 1 time unit deduction from the original
deadline. This is because the deadlines determine priorities
of tasks scheduled by EDF, thus ensuring that 77 has a
shorter deadline will give it higher priority, in effect reducing
the MST.

On the contrary, in the case of RM, any deduction from
the original deadline could not reduce the satisfying budget.
The deadlines of tasks scheduled by RM do not affect the
MST of the tasks, thus shortening the task deadlines when
using RM does not help enhancing the resource utilization
of the child components.

S. RELATED WORK

An analytical compositional framework was presented in
[I7] as a basis for the schedulability analysis of hierarchical
scheduling systems. It relies on the abstraction and composi-
tion of system components given by periodic interfaces. The
authors of [I5] extend their previous work [I7] by consider-
ing multiprocessors based on cluster-based scheduling while
using analytical methods to perform the analysis. However,
in both [I7] and [I5], the system entities are given in terms
of periodic interfaces without any specification of the tasks
behavior and dependency.

CARTS (Compositional Analysis of Real-Time Systems)
tool [I4] is an implementation of the theory given in [I7}
15]. Compared to our work, CARTS is a mature tool that is
easy to use. On the other hand, we describe more detailed
modeling and analysis.

Lipari et al [11] provide an analytical framework for the
formal specification and schedulability analysis of hierarchi-
cal scheduling systems. They also present a methodology
of how to compute the timing requirements of the interme-
diate levels (servers) making a set of tasks feasible. The
framework only considers static priority scheduling (Fixed
Priority Scheduling). Compared to that, we generalize the

analysis and estimation of the timing requirements to both
static and dynamic scheduling mechanisms.

Recently, model-based settings 2], [5l [7, B] are getting in-
tensively used for the schedulability analysis of real-time
systems due to: 1) the ability to describe more concrete
behaviors; 2) rigorous analysis (model-checking) with abso-
lute certainty; 3) simulation of the system execution which
can be helpful for the improvement and understandability.

The resource models represent an interface between a com-
ponent and the rest of the system. In [9], the authors in-
troduced the Dual Periodic Resource Model (DPRM) and
presented an algorithm for computing the optimal resource
interface, reducing the overhead suffered by the classical pe-
riodic resource models. However, since the actual workload
behavior is not considered the resource gain is basically ob-
tained through the reduction of the overhead, i.e. it is not
measured on the task execution.

In [13], the authors introduced a technique for improving
the schedulability of scheduling systems by reducing the re-
source interferences between tasks. The authors use shapers
to reduce the resource interference between higher-priority
and lower-priority tasks, and thus enable more lower-priority
tasks to be scheduled. However, this work is restricted to
fixed priority scheduling only.

The authors of [I0] introduce an interesting observation
that suggests an insight toward pessimism reduction in the
schedulability analysis of multi-core systems running un-
der Earliest Deadline first until Zero-Laxity (EDZL) policy.
This work demonstrates that the proposed EDZL test not
only has lower time complexity than existing EDZL schedu-
lability tests, but also significantly improves the schedula-
bility of systems running under EDZL policy.

In a similar way to the classical schedulability analysis
where demand and supply bound functions can be calcu-
lated for individual components (viewed as regular schedul-
ing systems) while considering the most pessimistic cases,
the authors of [3] introduce a compositional schedulabil-
ity analysis framework for component-based scheduling sys-
tems. For compositionality purposes, the resource model
(supplier) behavior is set to be non-deterministic in order
to simulate all potential supply scenarios. However, some
of the supply scenarios may not happen if the system com-
ponents are analyzed together. This may lead a system to
be non-schedulable when using compositional analysis while
it could be schedulable if one analyzes the entire system at
once.

In [4], the authors introduce a new resource supplier model,
called Synchronous Periodic Resource Model, in order to
increase the resource utilization and make more systems
schedulable. Such a resource model delays the resource
supply in order to avoid supplying resource when it is not
needed. Another observation established by the authors is
that restricting the potential task offsets leads to reduce the
resource requirements of system components. However, be-
cause such a framework does not capture the whole system
together, and rather analyzes each component individually,
it considers all potential preemption scenarios when analyz-
ing components which may lead to an over-approximation
of the resource supply.

In this paper, we proposed a new model of an HSS which
enables to capture the whole system together in order to
reduce the resource requirements of individual components,
by calculating more optimal interfaces compared to the state

of the art. Moreover, we introduced a new theoretical cal-
culation of the resource supply bound function in order to
validate our model-based claim.

6. CONCLUSION

In the design of modern automotive systems, a manufac-
turer tries to maximize the number of components, provided
by different suppliers, to be integrated on a given platform in
order to reduce the system cost. This paper’s contribution
focuses on reducing the resource requirements of individual
components, by calculating more optimal interfaces com-
pared to the state of the art, thus enhancing the resource
utilization of the whole system.

In this paper we have presented two new tighter supply
bound functions for checking the resource requirements and
schedulablility of components in hierarchical scheduling sys-
tems. The new supply bound functions are evaluated in the
context of a model-based hierarchical scheduling framework.

The system architecture we considered is given in terms of
hierarchical components, while the basic workload is given
by tasks. Besides, we used stopwatch automata and UPPAAL
tools (symbolic and statistical model checkers) to model and
analyze such hierarchical systems. To evaluate our contri-
bution, we compare our analysis results to a state of the art
tool CARTS.

From our optimization results, we observed that the max-
imum service time of a resource model is significant for eval-
uating a resource model in optimizing an HSS evaluated by
CARTS. Conclusively, the MST can be used to evaluate and
optimize resource requirements of an HSS component.

One of the most important aspects for further study is the
scalability of the method we have presented in this paper.
Other future work could be the modeling and analysis of an
industrial case study with concerns of overheads in order to
study the applicability of the framework.

7. REFERENCES

[1] S. Baruah, A. Mok, and L. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one
processor. In Real-Time Systems Symposium, 1990.
Proceedings., 11th, pages 182—-190, Dec 1990.

[2] M. Behnam, T. Nolte, I. Shin, M. Asberg, and R. Bril.
Towards hierarchical scheduling in VxWorks. In
OSPERT 2008, pages 63-72.

[3] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen,

M. Mikuéionis, U. Nyman, and A. Skou. Hierarchical
scheduling framework based on compositional analysis
using uppaal. In Proceedings of FACS 2013, LNCS
Volume 8348. Springer, 2013.

[4] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen,

M. Mikucionis, U. Nyman, and A. Skou. Widening the
schedulability of hierarchical scheduling systems. In
FACS 2014,, pages 209-227, 2014.

[5] L. Carnevali, A. Pinzuti, and E. Vicario.
Compositional verification for hierarchical scheduling
of real-time systems. IEFE Transactions on Software
Engineering, 39(5):638-657, 2013.

[6] F. Cassez and K. G. Larsen. The impressive power of
stopwatches. In C. Palamidessi, editor, CONCUR,
volume 1877 of Lecture Notes in Computer Science,
pages 138—-152. Springer, 2000.

[7] A. David, K. G. Larsen, A. Legay, and M. Mikucionis.
Schedulability of herschel-planck revisited using
statistical model checking. In ISoLA (2), volume 7610
of LNCS, pages 293-307. Springer, 2012.

[8] A. Easwaran, M. Anand, and I. Lee. Compositional
analysis framework using edp resource models. In
Real-Time Systems Symposium, 2007. RTSS 2007.
28th IEEFE International, pages 129-138, Dec 2007.

[9] J. Lee, L. T. X. Phan, S. Chen, O. Sokolsky, and
I. Lee. Improving resource utilization for
compositional scheduling using dprm interfaces.
SIGBED Rev., 8(1):38-45, Mar. 2011.

[10] J. Lee and I. Shin. Edzl schedulability analysis in
real-time multicore scheduling. Software Engineering,
IEEE Transactions on, 39(7):910-916, July 2013.

[11] G. Lipari and E. Bini. A methodology for designing
hierarchical scheduling systems. J. Embedded Comput.,
1(2):257-269, Apr. 2005.

[12] R. J. B. Mike Holenderski and J. J. Lukkien. An
efficient hierarchical scheduling framework for the
automotive domain. In Real-Time Systems,
Architecture, Scheduling, and Application, pages
67-94. InTech, 2012.

[13] L. T. X. Phan and I. Lee. Improving schedulability of
fixed-priority real-time systems using shapers. In
Proceedings of RTAS ’13, pages 217-226, Washington,
DC, USA, 2013. IEEE Computer Society.

[14] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy,
S. Chen, I. Lee, and O. Sokolsky. CARTS: a tool for
compositional analysis of real-time systems. SIGBED
Rev., 8(1):62-63, Mar. 2011.

[15] I. Shin, A. Easwaran, and I. Lee. Hierarchical
scheduling framework for virtual clustering of
multiprocessors. In EFCRTS, pages 181-190. IEEE
Computer Society, 2008.

[16] I. Shin and I. Lee. Periodic resource model for
compositional real-time guarantees. In RTSS’03, pages
2-13. IEEE Computer Society, 2003.

[17] L. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM Trans.
Embedded Comput. Syst., 7(3), 2008.

	University of Pennsylvania
	ScholarlyCommons
	12-2015

	Optimizing the Resource Requirements of Hierarchical Scheduling Systems
	Jin Hyun Kim
	Axel Legay
	Louis-Marie Traonouez
	Abdeldjalil Boudjadar
	Ulrik Nyman
	See next page for additional authors
	Recommended Citation

	Optimizing the Resource Requirements of Hierarchical Scheduling Systems
	Abstract
	Disciplines
	Comments
	Author(s)

	Introduction
	Preliminaries
	Stopwatch Automata
	Compositional Framework for HSSs

	Tighter Supply Bound Functions
	Maximum Service Time
	Supply Bound Function for RM
	Supply Bound Function for EDF

	Model-based Evaluation
	Stopwatch Automata Model of HSSs
	SWA Model for Interface Optimization
	Optimization of HSSs

	Related Work
	Conclusion
	References

