数字图像处理Python语言实现-图像增强-各向异性扩散滤波

本文介绍了各向异性扩散滤波在图像处理中的应用,这是一种基于热扩散框架的平滑技术,能保留图像边缘。文章详细讲解了滤波原理,并给出了OpenCV库在Python中的实现代码,适用于图像修复、分割等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各向异性扩散滤波

1. 前言

各向异性扩散滤波主要是基于热扩散框架,通过偏微分方程来表示。基于偏微分方程的各向异性扩散被广泛用于图像或表面平滑,图像修复,图像分割等。各向异性扩散滤波克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的(和双边滤波很像)。

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 [1] 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。目前最新的版本为4.4.0。本实例基于最新版本实现。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值