OpenCV3与深度学习实例-使用GoogLeNet模型进行图片分类识别

本文通过实例介绍了如何结合OpenCV3和深度学习模型GoogLeNet,实现对图片的分类识别。文章详细阐述了运行过程,并展示了实际的运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

#coding:utf-8

import cv2 as cv
import time
import numpy as np

def predict(image_path):
	
	prototxt = 'datas/models/caffe/bvlc_googlenet.prototxt'
	
	caffemodel = 'datas/models/caffe/bvlc_googlenet.caffemodel'
	
	synsetwords = 'datas/models/caffe/bvlc_googlenet_synset_words.txt'

	image = cv.imread(image_path)
	image = cv.resize(image,(256,256))
	# 加载分类
	rows = open(synsetwords).read().strip().split("\n")
	classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows]

	# 根据 Deploy 的 Prototxt, 得知训练后的 CNN model 需要输入数据的维度为
	# (1, 3, 224, 224)
	# 透过训练时的 Prototxt, 可以得知训练集的 Pixel RGB 平均值为 (104, 117, 123)
	# https://github.com/BVLC/caffe/blob/master/models/bvlc_googlenet/train_val.prototxt
	# 做 Mean subtraction 的目的 : 改善对抗光线改变造成的影响
	blob
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值