总结 | DataFrame、Series、array、tensor的创建及相互转化

本文介绍了在图像识别中如何创建和转换DataFrame、Series和Tensor数据结构,包括它们的创建方法、特点及常见操作,如DataFrame拆解、转换为array等,适合初学者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是一行

最近在入门图像识别,自然也会用到深度学习框架,也接触到了一个新的数据结构——tensor(张量)。除此之外,也有一些很常用的数据结构,比如DataFrame、Series、array等,这篇文章主要对这几种数据结构的创建及相互转换做一个小总结。

创建方法

DataFrame

这里就不在单独贴出每种数据结构的示例图,只是简单描述一下各个数据结构的特点。DataFrame类似于一个二维矩阵,但它的行列都有对应的索引。

DataFrame创建方法很多,这里给出比较常用的三种方法:

1、通过字典创建

2、通过元组创建

原理与通过字典创建一致,但需要注意行、列索引需要自己指定。

3、randn随机生成

np.random.randn(m,n)是生成一个 规格的矩阵,行列索引需要自己指定。

Series

Series 可以当成 DataFrame 中一个元素,一列索引对应一列值。

1、通过字典创建

2、通过列表创建

3、通过arange创建

array

tensor

这里 Tensor 是类,tensor 和 as_tensor则是方法,第一种生成的是浮点型,后两种生成数据的类型和传入数据类型一致,也就是说传入整型生成整型,传入浮点型生成浮点型。

转化

DataFrame 拆解 Series

索引出的单行或者单列的数据类型为Series。

DataFrame 转 array

1、直接获取values

2、通过numpy转换

Series 转 DataFrame

1、合成

2、to_frame()方法

Series 转 array

方法同DataFrame 转 array。


array 转 DataFrame

array 转 Series

array 转 tensor

tensor 转 array

上面这些创建及转化的方法只是一部分,也算是比较常用的一些,除此之外比如还可以通过列表作为中间介质进行转换等等,这里就不在过多介绍啦。

推荐阅读(点击标题可跳转阅读)如何让LOL找你约架的社会人给你道歉
华为提出十大数学挑战!
张一鸣:我的大学四年收获及工作感悟




我猜这种文章记不住的只能先默默收藏
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值