任取一个子串,元音的期望占比是元音个数除以长度
我们可以求 f [ i ] f[i] f[i]表示长度为 i i i的子串中元音的期望占比
但是有点难顶,不太好求的样子
考虑递推,我们定义 s u m [ i ] sum[i] sum[i]为元音的前缀数量
f [ 1 ] = s u m [ n ] f[1]=sum[n] f[1]=sum[n]
f [ 2 ] f[2] f[2]呢?长度为 2 2 2的串比长度为 1 1 1的串多覆盖了 [ 2 , n − 1 ] [2,n-1] [2,n−1]一次
长度为 3 3 3的串又比长度为 2 2 2的串多覆盖 [ 3 , n − 2 ] [3,n-2] [3,n−2]一次
所以,递推式为 f [ i ] = f [ i − 1 ] + s u m [ n − i + 1 ] − s u m [ i − 1 ] f[i]=f[i-1]+sum[n-i+1]-sum[i-1] f[i]=f[i−1]+sum[n−i+1]−sum[i−1]
直到了每个长度出现的元音个数,就好求了
比如算长度为 i i i的子串贡献,拿到长度为 i i i的子串概率是 n − i + 1 s u m n u m \frac{n-i+1}{sumnum} sumnumn−i+1
然后长度为 i i i的子串总长度是 i ∗ ( n − i + 1 ) i*(n-i+1) i∗(n−i+1),随便算一下就出来了
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int maxn = 1e6+10;
char a[maxn];
int n,sum[maxn],f[maxn];
signed main()
{
cin >> ( a+1 ); n = strlen( a+1 );
for(int i=1;i<=n;i++)
{
sum[i] = sum[i-1];
if( a[i]=='a'||a[i]=='e'||a[i]=='i'||a[i]=='o'||a[i]=='u'||a[i]=='y' ) sum[i]++;
}
for(int i=1;i<=n;i++) f[i] = f[i-1]+sum[n-i+1]-sum[i-1];
int sumlen = n*(n+1)*(2*n+1)/6;
int sumnum = n*(n+1)/2;
double ans = 0;
for(int i=1;i<=n;i++)
{
double p = (n-i+1.0)/sumnum;//拿到这个长度的概率
ans += p*( 1.0*f[i]/(i*(n-i+1)) );
}
printf("%.9lf",ans);
}