A.托米的字符串(期望,前缀和)

本文介绍了一种计算字符串中所有可能子串元音字母期望占比的算法,通过递推方式预处理元音前缀数量,并计算不同长度子串的贡献来得出最终答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LINK

任取一个子串,元音的期望占比是元音个数除以长度

我们可以求 f [ i ] f[i] f[i]表示长度为 i i i的子串中元音的期望占比

但是有点难顶,不太好求的样子

考虑递推,我们定义 s u m [ i ] sum[i] sum[i]为元音的前缀数量

f [ 1 ] = s u m [ n ] f[1]=sum[n] f[1]=sum[n]

f [ 2 ] f[2] f[2]呢?长度为 2 2 2的串比长度为 1 1 1的串多覆盖了 [ 2 , n − 1 ] [2,n-1] [2,n1]一次

长度为 3 3 3的串又比长度为 2 2 2的串多覆盖 [ 3 , n − 2 ] [3,n-2] [3,n2]一次

所以,递推式为 f [ i ] = f [ i − 1 ] + s u m [ n − i + 1 ] − s u m [ i − 1 ] f[i]=f[i-1]+sum[n-i+1]-sum[i-1] f[i]=f[i1]+sum[ni+1]sum[i1]

直到了每个长度出现的元音个数,就好求了

比如算长度为 i i i的子串贡献,拿到长度为 i i i的子串概率是 n − i + 1 s u m n u m \frac{n-i+1}{sumnum} sumnumni+1

然后长度为 i i i的子串总长度是 i ∗ ( n − i + 1 ) i*(n-i+1) i(ni+1),随便算一下就出来了

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int maxn = 1e6+10;
char a[maxn];
int n,sum[maxn],f[maxn];
signed main()
{
	cin >> ( a+1 );	n = strlen( a+1 );
	for(int i=1;i<=n;i++)
	{
		sum[i] = sum[i-1];
		if( a[i]=='a'||a[i]=='e'||a[i]=='i'||a[i]=='o'||a[i]=='u'||a[i]=='y' )	sum[i]++;
	}
	for(int i=1;i<=n;i++)	f[i] = f[i-1]+sum[n-i+1]-sum[i-1];
	int sumlen = n*(n+1)*(2*n+1)/6;
	int sumnum = n*(n+1)/2;
	double ans = 0;
	for(int i=1;i<=n;i++)
	{
		double p = (n-i+1.0)/sumnum;//拿到这个长度的概率
		ans += p*( 1.0*f[i]/(i*(n-i+1)) ); 
	}
	printf("%.9lf",ans); 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值