CF1364D Ehab‘s Last Corollary(思维,环,二分图,构造)

本文探讨了一种高效的方法,通过观察图的结构,确定复杂环中的最小环或取独立集。对于复杂情况,通过二分图染色和子图选择简化问题。关键在于理解树结构和环的存在对点数的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LINK

考虑一个环如果长大于等于 k k k,那么我们每次隔点取点,取出了 ⌈ k 2 ⌉ \lceil \frac{k}{2}\rceil 2k个不相关点

当然,这个环必须是复杂环中的最小环,否则可能点和点之间仍然存在边

若这个最小环点数已经小于等于 k k k,输出这个环即可

否则可以隔点取,输出这个独立集(输出 ⌈ k 2 ⌉ \lceil \frac{k}{2}\rceil 2k个点即可)

至于无环的情况,显然只可能是一棵树,对树二分图染色,必然有一侧的点大于等于 ⌈ n 2 ⌉ \lceil \frac{n}{2}\rceil 2n,点数显然多于 ⌈ k 2 ⌉ \lceil \frac{k}{2}\rceil 2k

但是最小环并不好找,此解法终止(不过似乎有人就是这么做的??)

不过还有一种非常奇妙(怪)的做法

先考虑 k = n k=n k=n的情况,此时如果是一棵树,那么二分图染色可以轻松输出独立集

如果不是一棵树,必然存在环,这个环点数不可能大于 n n n,所以输出任意一个环即可

然后 k k k任意的话,因为图是连通图,考虑选择图中一个大小为 k k k的子图,然后和上面一样做…

感觉很不可思议,突然变得很简单emm

代码贴个别人的Here

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值