(leetcode)2470. 最小公倍数为 K 的子数组数目

本文介绍了一种高效算法,用于计算给定数组中子数组的最小公倍数(LCM)等于特定值k的数量。该算法通过维护一个有序的LCM集合来减少不必要的计算,实现了O(nlog(k))的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

link

题意

求有多少子数组的lcm为k.


以r为右端点, 左端点l取[1,r]可以得到r个lcm

这r个lcm按顺序一定是不增的, 相同的lcm的左端点是连续的.

考虑加入a[r+1]后, 满足lcm=k的左端点有多少.

这样其实不需要对左边的r个lcm去一一计算, 只需要从中计算不重复且为k的因子的那些

这样的lcm不会很多.

所以可以一直维护这个集合, 这样新加入一个数, 只需要和左边log级别的lcm运算求新增即可

在实现的时, 由于我们维护的Lcm集合不减, 且为k的因子, 所以每次只需要看第一个最大的lcm是否是k计算答案即可, 时间复杂度O(nlog(k) )

func gcd(a,b int) int{
    if b==0{
        return a
    }
    return gcd(b,a%b)
}

func subarrayLCM(nums []int, k int) int {
    type result struct{
        lcm int
        i int
    }
    ans := 0
    var a []result
    i0 := -1
    for i,x := range nums {
        if k%x>0{
            a = nil
            i0 = i
            continue
        }
        for j,p := range a{
            a[j].lcm = p.lcm/gcd( p.lcm,x )*x
        }
        a = append( a,result{x,i} )
        j := 0
        for _,q := range a[1:]{
            if a[j].lcm != q.lcm{
                j++
                a[j] = q
            }else{
                a[j].i = q.i
            }
        }
        a = a[:j+1]
        j = len( a )+1
        for id,x := range a{
            if x.lcm<=k{
                j = id
                break
            }
        }
        a = a[j:]
        if a[0].lcm == k{
             ans += a[0].i-i0
        }
    }
    return ans
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值