jdk11源码--Integer.numberOfLeadingZeros

本文详细介绍了一个用于计算32位整型变量二进制表示中前导零数量的高效算法。通过使用二分查找原理,该算法能够在指定值的二进制补码表示中最高位1之前,快速确定零位的数量。特别地,当指定值为零时,算法将返回32。文章通过具体的示例和源码解析,展示了算法的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注本人公众号

在这里插入图片描述
该函数的功能是:在指定 int 值的二进制补码表示形式中最高位(最左边)的 1 位之前,返回零位的数量。如果指定值在其二进制补码表示形式中不存在 1 位,换句话说,如果它等于零,则返回 32。
实现原理:源码:应用了典型的二分查找,先把32位整形分为高16位和低16位查找非零数,在对高16位进行或低16位进行二分


// 首先在jvm中一个int类型的数据占4个字节,共32位,其实就相当于一个长度为32的数组。
// 那我们要计算首部0的个数,就是从左边第一个位开始累加0的个数,直到遇到一个非零值。
@HotSpotIntrinsicCandidate
public static int numberOfLeadingZeros(int i) {
	// HD, Count leading 0's
    if (i <= 0)                                                                     
        return i == 0 ? 32 : 0;//负数,首位就是1,所以返回0;如果正好是0,那么返回32
	int n = 31;
	
	//如果高16位有1,那么n减半(二分查找的核心),i无符号右移16位,保留高16位
	if (i >= 1 << 16) { n -= 16; i >>>= 16; }
	//到这里,如果前面一步没有截断,那么高16位都是0;如果上面一步截断了,那么只有16位了。
	//如果高8位有1,那么n减半(二分查找的核心),i无符号右移16位,保留高16位
	if (i >= 1 <<  8) { n -=  8; i >>>=  8; }
	//与上面同理。都是二分查找
	if (i >= 1 <<  4) { n -=  4; i >>>=  4; }
	if (i >= 1 <<  2) { n -=  2; i >>>=  2; }
	//最终返回结果
	return n - (i >>> 1);
}

假如i=10

描述
i=1000000000 00000000 00000000 00001010
1 << 1600000000 00000001 00000000 00000000
i >= 1 << 16这个if不会走
1 << 800000000 00000000 00000001 00000000
i >= 1 << 8这个if不会走
1 << 400000000 00000000 00000000 00010000
i >= 1 << 4这个if不会走
1 << 200000000 00000000 00000000 00000100
i >= 1 << 1这个if会走, n-2=31-2=29, i=2
i >>> 1此时i=2, i>>>1 = 1(十进制)
n-129-1=28
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐崇拜234

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值