大模型检索增强生成RAG


版权声明

  • 本文原创作者:谷哥的小弟
  • 作者博客地址:http://blog.csdn.net/lfdfhl

在这里插入图片描述

RAG简介

大模型检索增强生成(Retrieval-Augmented Generation,简称RAG)是一种结合了信息检索技术和语言生成模型的人工智能技术,主要用于增强大型语言模型(Large Language Models, LLMs)处理知识密集型任务的能力。

RAG是一种创新的人工智能技术,它将信息检索与语言生成相结合,使语言模型在生成回答或文本时能够动态地从外部知识库中检索相关信息。这种方法不仅提高了模型生成内容的准确性、可靠性和透明度,还减少了“幻觉”现象(即模型生成看似合理但实际上错误的信息)。

外部知识库

外部知识库并不是大模型的一部分,而是存在于大模型以外的一个独立的组件。大模型是一个经过大量数据训练得到的机器学习模型,它本身包含了丰富的语言知识和模式,但并不包含所有具体的事实性知识。而外部知识库则是一个专门用于存储和管理具体知识(如事实、概念、定义等)的数据库或文本集合。在实际应用中,大模型和外部知识库通常会协同工作。当大模型遇到一个需要具体知识来回答的问题时,它会向外部知识库发出查询请求,以获取相关的知识信息。然后,大模型会利用这些信息来生成更准确、更具体的回答。这种协同工作的方式使得大模型能够处理更加复杂和多样化的问题,同时提高了回答的准确性和可靠性。

或许有的人有疑问:为什么大模型不能直接给出答案,而需要依赖外部知识库呢?尽管大模型(如GPT系列、BERT系列等)在训练过程中接触了大量的文本数据,但它们并不能记住所有具体的事实性知识。这些模型的强项在于捕捉语言模式、上下文关系和语法结构,而不是存储具体的事实。世

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谷哥的小弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值