一文了解 Apache Spark 3.0 动态分区裁剪(Dynamic Partition Pruning)的使用

本文介绍了Apache Spark 3.0的动态分区裁剪特性,讲解了启用条件,包括需要设置spark.sql.optimizer.dynamicPartitionPruning.enabled参数为true,以及Join类型的要求。动态分区裁剪会在满足特定统计信息和参数评估后触发,可以显著提高性能。通过示例展示了创建分区表并分析其DAG图,指出在某些场景下性能提升可达2-18倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

福利:过往记忆大数据知识星球双11限时折扣,原价99元,现价39元,需要的先加 fangzhen0219 微信了解详情,三天内不满意随时全额退。星球没有花哨玩法,主要就是大数据相关问题答疑,能力范围内知无不言、大数据相关资料分享、大数据原创技术文章分享等。另外,本知识星球有效期到2020年4月28日,到期需续费。

Spark 3.0 动态分区裁剪(Dynamic Partition Pruning),里面涉及到动态分区的优化思路等,但是并没有涉及到如何使用,本文将介绍在什么情况下会启用动态分区裁剪。
并不是什么查询都会启用动态裁剪优化的,必须满足以下几个条件:
  • spark.sql.optimizer.dynamicPartitionPruning.enabled 参数必须设置为 true,不过这个值默认就是启用的;

  • 需要裁减的表必须是分区表,而且分区字段必须在 join 的 on 条件里面;

  • Join 类型必须是 INNER, LEFT SEMI (左表是分区表), LEFT OUTER (右表是分区表), or RIGHT OUTER (左表是分区表)。

  • 满足上面的条件也不一定会触发动态分区裁减,还必须满足 spark.sql.optimizer.dynamicPartitionPruning.useStats 和 spark.sql.optimizer.dynamicPartitionPruning.fallbackFilterRatio 两个参数综合评估出一个进行动态分区裁减是否有益的值,满足了才会进行动态分区裁减。评估函数实现请参见 org.apache.spark.sql.dynamicpruning.PartitionPruning#pruningHasBenefit。

如何使用 Dynamic Partition Pruning

我们先使用 Spark 创建两张表:

spark
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值