福利:过往记忆大数据知识星球双11限时折扣,原价99元,现价39元,需要的先加 fangzhen0219 微信了解详情,三天内不满意随时全额退。星球没有花哨玩法,主要就是大数据相关问题答疑,能力范围内知无不言、大数据相关资料分享、大数据原创技术文章分享等。另外,本知识星球有效期到2020年4月28日,到期需续费。
spark.sql.optimizer.dynamicPartitionPruning.enabled 参数必须设置为 true,不过这个值默认就是启用的;
需要裁减的表必须是分区表,而且分区字段必须在 join 的 on 条件里面;
Join 类型必须是 INNER, LEFT SEMI (左表是分区表), LEFT OUTER (右表是分区表), or RIGHT OUTER (左表是分区表)。
满足上面的条件也不一定会触发动态分区裁减,还必须满足 spark.sql.optimizer.dynamicPartitionPruning.useStats 和 spark.sql.optimizer.dynamicPartitionPruning.fallbackFilterRatio 两个参数综合评估出一个进行动态分区裁减是否有益的值,满足了才会进行动态分区裁减。评估函数实现请参见 org.apache.spark.sql.dynamicpruning.PartitionPruning#pruningHasBenefit。
我们先使用 Spark 创建两张表: