简介: 开源项目推荐:3D点云处理软件CloudCompare,基于Qt和OpenGL
CloudCompare
是一款基于GPL开源协议的3D点云处理软件,可以在Windows、MacOS
和Linux
上运行。我们可以通过阅读其源码来一窥3D点云处理的基本算法,也可以通过设计新的plugin
来拓展本软件。
CloudCompare
是一个三维点云(网格)编辑和处理软件。最初,它被设计用来对稠密的三维点云进行直接比较。它依赖于一种特定的八叉树结构,在进行点云对比这类任务时具有出色的性能。此外,由于大多数点云都是由地面激光扫描仪(例如LMI
)采集的,CloudCompare
的目的是在一台标准笔记本电脑上处理大规模的点云——通常超过1000万个点云。例如在一台带有双核处理器的笔记本电脑上,计算出300万个点到14000个三角形网格的距离需要10秒。
1、官网
http://www.cloudcompare.org/
http://www.cloudcompare.org/forum/
1)主程序源码,基于Qt5
https://github.com/CloudCompare/CloudCompare
2)CCLib库(包含核心算法)
https://github.com/CloudCompare/CCCoreLib
3)其他组件:
https://github.com/CloudCompare/CloudCompare/tree/master/libs
- qCC_db(数据库)
- qCC_io(文件I/O库)
- qCC_gl(基于OpenGL的3D显示库)
2、源码编译
准备好环境:VS2017+Qt5.12.9 x64
1)把CCCoreLib
源码包解压到CloudCompare
旗下的路径:
\CloudCompare-master\libs\qCC_db\extern\CCCoreLib
2)使用cmake
生成VS2017 x64的工程。其中Plugin
的选项:
默认情形下,只有PLUGIN_IO_QCORE
打钩。除了PLUGIN_IO_QCORE
是必需品之外,CloudCompare
不需要任何plugin。
有兴趣的读者,可以勾选PLUGIN_EXAMPLE_???
这几个插件学习研究一下下。
3)一键编译到底,成功!最终会生成两个exe,分别是主程序CloudCompare
和小工具ccViewer
。
\CloudCompare-master\build64\qCC\Debug\CloudCompare.exe
\CloudCompare-master\build64\ccViewer\Debug\ccViewer.exe
如果勾选了插件文件,则需要手动把.dll文件拷贝到以下路径:
\CloudCompare-master\build64\qCC\Debug\data\plugins
4)ccViewer
是配套的小工具,可以查看3d视图。它支持很多种文件格式,最简单的是txt文本。
我们输入以下xyz
坐标,即可查看3d效果。
3、参考文献
1)《CloudCompare:三维点云(网格)编辑和处理工具》
4、题外话
1)点云库
PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。如果说OpenCV是2D信息获取与处理的结晶,那么PCL就在3D信息获取与处理上具有同等地位,PCL是BSD授权方式,可以免费进行商业和学术应用。
https://pointclouds.org/
https://www.pclcn.org/
2)一个精简的开源点云库
Cilantro是一个精简高效的点云数据处理库,编程是C++,依赖项较少,但是相比较于PCL来说,代码更有可读性,PCL中大量的使用C++高级特性,阅读起来比较难并且不易重构拆解代码,而cilantro重点放在了3D案例上,尽量减少了样板代码的数量,包含了对点云常见的操作,是一个比较简单易懂的API,所以该库可以被广泛的模块化,并且支持多维度数据进行操作,同时保证对算法模块的模块化和可扩展性。作者是一位在Magic leap公司工作的计算机视觉工程师,是马里兰大学伯克利分校的计算机科学博士,是感知机器人小组的成员。
https://github.com/kzampog/cilantro
3)免费的几何库
http://geometryhub.net/overview
- BGL (Basic Geometry Library)
包含了三维数据处理最基础的数据结构。用户可以很方便的使用它来开发各种几何相关的算法。它是免费的,可以无限制的使用,包括科研,商业产品等。
http://geometryhub.net/bgl
- Geometry++
Geometry++是一个支持多平台的三维数据处理几何库,可以作为三维数据处理软件的几何引擎来使用
http://geometryhub.net/geometryplusplus
- Magic3D
Magic3D提供了三维点云和网格数据处理的基本功能。所有功能的几何算法采用了BGL和Geometry++几何库
http://geometryhub.net/magic3d
4)三维深度学习之pointnet
PointNet:https://github.com/charlesq34/pointnet
PointNet++:https://github.com/charlesq34/pointnet2