【新版系统架构】第十九章-大数据架构设计理论与实践

本文深入探讨了大数据处理系统架构中的Lambda和Kappa架构。Lambda架构适用于离线和实时数据处理,强调容错性、扩展性和低延迟,而Kappa架构则进一步简化,专注于流处理,适合增量数据场景。通过对两种架构的比较,帮助理解各自在不同场景的应用优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据处理系统架构

大数据处理系统面临挑战

  1. 如何利用信息技术等手段处理非结构化和半结构化数据
  2. 如何探索大数据复杂性、不确定性特征描述的刻画方法及大数据的系统建模
  3. 数据异构性与决策异构性的关系对大数据知识发现与管理决策的影响

大数据处理系统架构特征

  1. 鲁棒性和容错性
  2. 低延迟读取和更新能力
  3. 横向扩容
  4. 通用性
  5. 延展性
  6. 即席查询能力
  7. 最少维护能力
  8. 可调式性

Lambda架构

Lambda架构用于同时处理离线和实时数据,可容错,可扩展的分布式系统,具备强鲁棒性和低延迟和持续更新。

Lambda架构分为三层:批处理层、加速层、服务层

在这里插入图片描述
批处理层核心功能:存储数据集和生成Batch View
主数据集中数据必须具备以下三个属性:数据是原始的、数据是不可变的、数据永远是真实的

Lambda架构优缺点:
优点:容错性好,查询灵活度高,易伸缩、易扩展
缺点:全场景覆盖带来的编码开销,针对具体

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿提说说

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值