004.median-of-two-sorted-arrays

这是一个关于算法的问题,目标是在两个已排序的数组nums1和nums2中找到它们合并后的中位数,要求整体运行时间复杂度为O(log(m+n))。示例给出了不同情况下的中位数计算方法,通过将较短的数组插入到较长数组的适当位置来找到中位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

class Solution(object):
    def findMedianSortedArrays(self, nums1, nums2):
        a, b = sorted((nums1, nums2), key=len)
        m, n = len(a), len(b)
        after = (m + n - 1) / 2
        lo, hi = 0, m
        while lo < hi:
            i = (lo + hi) / 2
            if after-i-1 < 0 or a[i] >= b[after-i-1]:
                hi = i
            else:
                lo = i + 1
        i = lo
        nextfew = sorted(a[i:i+2] + b[after-i:after-i+2])
        return (nextfew[0] + nextfew[1 - (m+n)%2]) / 2.0
                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流动熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值