【牛客剑指offer刷题】:Python:47. 礼物的最大价值

本文介绍如何使用动态规划算法解决在一个棋盘上选择路径获取礼物的问题,通过给出实例和代码实现,帮助读者理解如何计算从左上角到右下角路径中礼物价值的最大总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

在一个m×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

如输入这样的一个二维数组,
[
[1,3,1],
[1,5,1],
[4,2,1]
]
那么路径 1→3→5→2→1 可以拿到最多价值的礼物,价值为12

示例1

输入:
[[1,3,1],[1,5,1],[4,2,1]]

返回值:
12

备注:

0<grid.length≤200
0<grid[0].length≤200

代码:动态规划

#coding:utf-8
#
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
# 
# @param grid int整型二维数组 
# @return int整型
#
class Solution:
    def maxValue(self , grid ):
        # write code here
        if not grid or not grid[0]:
            return 0 
        m, n = len(grid), len(grid[0])
        dp = [[0 for i in range(n)] for j in range(m)]
        for i in range(m):
            dp[i][0] = sum([grid[j][0] for j in range(i+1)])
        for i in range(n):
            dp[0][i] = sum([grid[0][j] for j in range(i+1)])
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = grid[i][j] + max(dp[i-1][j], dp[i][j-1])
        return dp[-1][-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值