描述
在一个m×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
如输入这样的一个二维数组,
[
[1,3,1],
[1,5,1],
[4,2,1]
]
那么路径 1→3→5→2→1 可以拿到最多价值的礼物,价值为12
示例1
输入:
[[1,3,1],[1,5,1],[4,2,1]]
返回值:
12
备注:
0<grid.length≤200
0<grid[0].length≤200
代码:动态规划
#coding:utf-8
#
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
# @param grid int整型二维数组
# @return int整型
#
class Solution:
def maxValue(self , grid ):
# write code here
if not grid or not grid[0]:
return 0
m, n = len(grid), len(grid[0])
dp = [[0 for i in range(n)] for j in range(m)]
for i in range(m):
dp[i][0] = sum([grid[j][0] for j in range(i+1)])
for i in range(n):
dp[0][i] = sum([grid[0][j] for j in range(i+1)])
for i in range(1, m):
for j in range(1, n):
dp[i][j] = grid[i][j] + max(dp[i-1][j], dp[i][j-1])
return dp[-1][-1]