大数据共享单车数据分析与可视化

大数据共享单车数据分析与可视化(源码分享)

大数据共享单车数据分析与可视化(源码分享)

文章目录

✍🏻作者简介:机器学习,深度学习,卷积神经网络处理,图像处理
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+
🤵‍♂代码获取:@个人主页

1 课题背景

前几年共享单车项目在国内大热,五颜六色的单车一夜之间遍布城市的各个角落。其实,早在3年前国外就有类似的项目兴起:通过历史用车记录结合天气等数据预测共享单车项目在华盛顿的需求

数据的特征解释

2 数据清洗

导库

import datetime
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from pyecharts.charts import *
import pyecharts.options as opts
from pyecharts.faker import Faker
from pyecharts.commons.utils import JsCode

读数据

df=pd.read_csv('data.csv')

提出假设

这里我们将研究决定单车租借的因素,上面给出了各个特征的解释,首先我们先大胆的提出假设:

查看有无缺失值和数据类型的情况

发现并无缺失值,不过时间的数据类型是object 需要转化为时间类型,同时为了更方便的分析数据,将datetime拆为 Year Month Weekday Hour

特征提取

#数据预处理
data['season'] = data['season'].map({1:'spring',2:'summer',3:'fall',4:'winner'})
data['weather'] = data['weather'].map({1:'Good',2:'Normal',3:'Bad',4:'ver Bad'})

#特征衍生
data['datetime'] = pd.to_datetime(data['datetime'])
 
data['year'] = data.datetime.apply(lambda d:d.year)
data['month'] = data.datetime.apply(lambda d:d.month)
data['day'] = data.datetime.apply(lambda d:d.day)
data['hour'] = da
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackie_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值