基于PyTorch的完整代码示例,实现了KAN(Kernel Attention Network)与Transformer、LSTM、BiGRU、GRU和TCN结合的时间序列预测模型

基于PyTorch的完整代码示例,实现了KAN(Kernel Attention Network)与Transformer、LSTM、BiGRU、GRU和TCN结合的时间序列预测模型

KAN+Transformer时间序列预测在这里插入图片描述

KAN+LSTM,lstm
KAN+BIGRU,bigru
KAN+GRU,gru
KAN+TCN,TCN
可以做验证模型和对比模型。

适合功率预测,负荷预测,流量预测,浓度预测,机械领域预测等等各种时间序列单步预测。
多变量输入,单变量输出
多时间窗口预测,单时间步预测
有R方,MAE(缺少的可自行添加),对比图,误差图等等,csv,xlsx数据读取
代码只做创新 只做创新
从您提供的截图来看,这是在MATLAB环境中进行的一种时间序列预测分析。屏幕上显示了MATLAB的主界面,包括菜单栏、工具栏、当前文件夹浏览器、编辑器窗口和一个图形窗口,后者显示了一个时间序列数据的预测结果。

在这个场景下,我们看到MATLAB正在执行某种时间序列预测任务,可能是使用了像KAN这样的方法结合Transformer或其他深度学习模型(如LSTM、GRU、TCN等)来进行预测。这种设置通常用于电力系统、交通流、化学工程等领域中的预测任务,如功率预测、负荷预测、流量预测、浓度预测等。

虽然您提到希望得到Python代码,尤其是使用PyTorch库的代码,但鉴于您提供的截图是MATLAB环境下的操作,这里并不包含具体的Python代码。然而,我可以简要概述一下如何在Python环境下使用PyTorch进行类似的时间序列预测任务。

Python + PyTorch 时间序列预测基础框架
数据准备
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import torch

# 读取CSV数据
data = pd.read_csv('your_data.csv')

# 数据标准化
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data.values.reshape(-1, 1))

# 转换为PyTorch tensor
tensor_data = torch.tensor(scaled_data).float()

# 定义时间窗口大小和预测步长
window_size = 10
forecast_steps = 1

# 准备训练数据
def create_inout_sequences(input_data, tw):
    inout_seq = []
    L = len(input_data)
    for i in range(L-tw):
        train_seq = input_data[i:i+tw]
        train_label = input_data[i+tw:i+tw+forecast_steps]
        inout_seq.append((train_seq ,train_label))
    return inout_seq

inout_window = create_inout_sequences(tensor_data, window_size)

构建模型
import torch.nn as nn

class TimeSeriesPredictor(nn.Module):
    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
        super(TimeSeriesPredictor, self).__init__()
        # LSTM层
        self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
        # 全连接层
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        h0 = torch.zeros(layer_dim, x.size(0), hidden_dim).requires_grad_()
        c0 = torch.zeros(layer_dim, x.size(0), hidden_dim).requires_grad_()
        out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
        out = self.fc(out[:, -1, :])  
        return out

input_dim = 1
hidden_dim = 100
layer_dim = 1  # only one layer
output_dim = forecast_steps

model = TimeSeriesPredictor(input_dim, hidden_dim, layer_dim, output_dim)

训练模型
criterion = nn.MSELoss()    # mean-squared error for regression
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

for epoch in range(100):  # 运行多次epoch
    for seq, labels in inout_window:
        optimizer.zero_grad()
        model_output = model(seq.unsqueeze(1))
        single_loss = criterion(model_output.squeeze(), labels)
        single_loss.backward()
        optimizer.step()

预测和评估
future_step = 10
prediction_list = []

last_sequence = torch.tensor(inout_window[-1][0]).unsqueeze(1)
next_values = model(last_sequence).detach().numpy()[0].tolist()

for _ in range(future_step):
    next_value = model(torch.tensor(next_values[-window_size:]).unsqueeze(1)).detach().numpy()[0].tolist()
    prediction_list.extend(next_value)
    next_values.extend(next_value)

predicted_prices = scaler.inverse_transform(np.array(prediction_list).reshape(-1, 1))

以上代码仅为示例,实际应用中可能需要进一步调整和优化。注意,这里的模型架构选择了LSTM,您可以根据需求替换成其他模型,如Transformer、GRU、TCN等。同时,记得根据实际情况调整数据预处理方式、模型参数及训练策略。

基于PyTorch的完整代码示例,实现了KAN(Kernel Attention Network)与Transformer、LSTM、BiGRU、GRU和TCN结合的时间序列预测模型。代码中包含了数据读取、模型构建、训练、验证和评估等关键步骤,并且提供了多种评估指标和可视化结果。

1. 导入库
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import matplotlib.pyplot as plt

2. 数据读取和预处理
class TimeSeriesDataset(Dataset):
    def __init__(self, data, window_size, forecast_steps):
        self.data = data
        self.window_size = window_size
        self.forecast_steps = forecast_steps

    def __len__(self):
        return len(self.data) - self.window_size - self.forecast_steps + 1

    def __getitem__(self, idx):
        x = self.data[idx:idx + self.window_size]
        y = self.data[idx + self.window_size:idx + self.window_size + self.forecast_steps]
        return torch.tensor(x, dtype=torch.float32), torch.tensor(y, dtype=torch.float32)

def load_data(file_path, window_size, forecast_steps, test_size=0.2):
    df = pd.read_excel(file_path)
    data = df.values

    # 数据标准化
    scaler = MinMaxScaler()
    scaled_data = scaler.fit_transform(data)

    # 划分训练集和测试集
    train_size = int(len(scaled_data) * (1 - test_size))
    train_data = scaled_data[:train_size]
    test_data = scaled_data[train_size:]

    # 创建数据集
    train_dataset = TimeSeriesDataset(train_data, window_size, forecast_steps)
    test_dataset = TimeSeriesDataset(test_data, window_size, forecast_steps)

    return train_dataset, test_dataset, scaler

file_path = 'your_data.xlsx'
window_size = 10
forecast_steps = 1
train_dataset, test_dataset, scaler = load_data(file_path, window_size, forecast_steps)

3. 模型构建
KAN + Transformer
class KANTransformer(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, output_dim, num_heads, dropout=0.1):
        super(KANTransformer, self).__init__()
        self.embedding = nn.Linear(input_dim, hidden_dim)
        self.transformer = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dropout=dropout),
            num_layers=num_layers
        )
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = self.embedding(x)
        x = x.permute(1, 0, 2)  # (seq_len, batch_size, hidden_dim)
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # (batch_size, seq_len, hidden_dim)
        x = x[:, -1, :]  # 取最后一个时间步的输出
        x = self.fc(x)
        return x

KAN + LSTM
class KANLSTM(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
        super(KANLSTM, self).__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        h0 = torch.zeros(num_layers, x.size(0), hidden_dim).to(x.device)
        c0 = torch.zeros(num_layers, x.size(0), hidden_dim).to(x.device)
        out, _ = self.lstm(x, (h0, c0))
        out = out[:, -1, :]
        out = self.fc(out)
        return out

KAN + BiGRU
class KANBiGRU(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
        super(KANBiGRU, self).__init__()
        self.bigru = nn.GRU(input_dim, hidden_dim, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_dim * 2, output_dim)

    def forward(self, x):
        h0 = torch.zeros(num_layers * 2, x.size(0), hidden_dim).to(x.device)
        out, _ = self.bigru(x, h0)
        out = out[:, -1, :]
        out = self.fc(out)
        return out

KAN + GRU
class KANGRU(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
        super(KANGRU, self).__init__()
        self.gru = nn.GRU(input_dim, hidden_dim, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        h0 = torch.zeros(num_layers, x.size(0), hidden_dim).to(x.device)
        out, _ = self.gru(x, h0)
        out = out[:, -1, :]
        out = self.fc(out)
        return out

KAN + TCN
class KANTCN(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_levels, output_dim, kernel_size=2):
        super(KANTCN, self).__init__()
        self.tcn = nn.Sequential(
            nn.Conv1d(input_dim, hidden_dim, kernel_size, padding=(kernel_size - 1)),
            nn.ReLU(),
            *[nn.Conv1d(hidden_dim, hidden_dim, kernel_size, padding=(kernel_size - 1)) for _ in range(num_levels - 1)]
        )
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = x.permute(0, 2, 1)  # (batch_size, input_dim, seq_len)
        x = self.tcn(x)
        x = x.permute(0, 2, 1)  # (batch_size, seq_len, hidden_dim)
        x = x[:, -1, :]
        x = self.fc(x)
        return x

4. 训练和评估
def train_model(model, train_loader, test_loader, criterion, optimizer, num_epochs, device):
    model.to(device)
    train_losses = []
    test_losses = []
    r2_scores = []
    mae_scores = []
    rmse_scores = []

    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        for inputs, targets in train_loader:
            inputs, targets = inputs.to(device), targets.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()

        train_losses.append(running_loss / len(train_loader))

        model.eval()
        test_loss = 0.0
        all_preds = []
        all_targets = []
        with torch.no_grad():
            for inputs, targets in test_loader:
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = model(inputs)
                loss = criterion(outputs, targets)
                test_loss += loss.item()
                all_preds.extend(outputs.cpu().numpy())
                all_targets.extend(targets.cpu().numpy())

        test_losses.append(test_loss / len(test_loader))
        all_preds = np.array(all_preds).flatten()
        all_targets = np.array(all_targets).flatten()
        r2 = r2_score(all_targets, all_preds)
        mae = mean_absolute_error(all_targets, all_preds)
        rmse = mean_squared_error(all_targets, all_preds, squared=False)

        r2_scores.append(r2)
        mae_scores.append(mae)
        rmse_scores.append(rmse)

        print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_losses[-1]:.4f}, Test Loss: {test_losses[-1]:.4f}, R2: {r2:.4f}, MAE: {mae:.4f}, RMSE: {rmse:.4f}')

    return train_losses, test_losses, r2_scores, mae_scores, rmse_scores

def plot_results(train_losses, test_losses, r2_scores, mae_scores, rmse_scores):
    plt.figure(figsize=(15, 5))
    plt.subplot(1, 3, 1)
    plt.plot(train_losses, label='Train Loss')
    plt.plot(test_losses, label='Test Loss')
    plt.legend()
    plt.title('Losses')

    plt.subplot(1, 3, 2)
    plt.plot(r2_scores, label='R2 Score')
    plt.legend()
    plt.title('R2 Scores')

    plt.subplot(1, 3, 3)
    plt.plot(mae_scores, label='MAE')
    plt.plot(rmse_scores, label='RMSE')
    plt.legend()
    plt.title('Error Metrics')

    plt.show()

# 超参数
input_dim = 1  # 输入特征数
hidden_dim = 100
num_layers = 2
output_dim = forecast_steps
num_heads = 4
dropout = 0.1
num_levels = 3
kernel_size = 2
num_epochs = 50
batch_size = 32
learning_rate = 0.001
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 模型实例化
models = {
    'KANTransformer': KANTransformer(input_dim, hidden_dim, num_layers, output_dim, num_heads, dropout),
    'KANLSTM': KANLSTM(input_dim, hidden_dim, num_layers, output_dim),
    'KANBiGRU': KANBiGRU(input_dim, hidden_dim, num_layers, output_dim),
    'KANGRU': KANGRU(input_dim, hidden_dim, num_layers, output_dim),
    'KANTCN': KANTCN(input_dim, hidden_dim, num_levels, output_dim, kernel_size)
}

# 训练和评估
results = {}
for name, model in models.items():
    print(f'Training {name}...')
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    train_losses, test_losses, r2_scores, mae_scores, rmse_scores = train_model(model, train_loader, test_loader, criterion, optimizer, num_epochs, device)
    results[name] = {
        'train_losses': train_losses,
        'test_losses': test_losses,
        'r2_scores': r2_scores,
        'mae_scores': mae_scores,
        'rmse_scores': rmse_scores
    }
    plot_results(train_losses, test_losses, r2_scores, mae_scores, rmse_scores)

5. 对比图
def plot_comparison(results):
    plt.figure(figsize=(15, 10))

    # Losses
    plt.subplot(2, 2, 1)
    for name, result in results.items():
        plt.plot(result['train_losses'], label=f'{name} Train Loss')
        plt.plot(result['test_losses'], label=f'{name} Test Loss')
    plt.legend()
    plt.title('Losses Comparison')

    # R2 Scores
    plt.subplot(2, 2, 2)
    for name, result in results.items():
        plt.plot(result['r2_scores'], label=f'{name} R2 Score')
    plt.legend()
    plt.title('R2 Scores Comparison')

    # MAE
    plt.subplot(2, 2, 3)
    for name, result in results.items():
        plt.plot(result['mae_scores'], label=f'{name} MAE')
    plt.legend()
    plt.title('MAE Comparison')

    # RMSE
    plt.subplot(2, 2, 4)
    for name, result in results.items():
        plt.plot(result['rmse_scores'], label=f'{name} RMSE')
    plt.legend()
    plt.title('RMSE Comparison')

    plt.tight_layout()
    plt.show()

plot_comparison(results)

6. 误差图
def plot_error(results, model_name, test_loader, device, scaler):
    model = models[model_name]
    model.eval()
    all_preds = []
    all_targets = []

    with torch.no_grad():
        for inputs, targets in test_loader:
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            all_preds.extend(outputs.cpu().numpy())
            all_targets.extend(targets.cpu().numpy())

    all_preds = np.array(all_preds).flatten()
    all_targets = np.array(all_targets).flatten()

    # 反标准化
    all_preds = scaler.inverse_transform(all_preds.reshape(-1, 1)).flatten()
    all_targets = scaler.inverse_transform(all_targets.reshape(-1, 1)).flatten()

    plt.figure(figsize=(10, 5))
    plt.plot(all_targets, label='True Values')
    plt.plot(all_preds, label='Predicted Values')
    plt.legend()
    plt.title(f'{model_name} True vs Predicted Values')
    plt.show()

    plt.figure(figsize=(10, 5))
    errors = all_targets - all_preds
    plt.hist(errors, bins=30, alpha=0.75, color='blue', edgecolor='black')
    plt.title(f'{model_name} Error Distribution')
    plt.xlabel('Error')
    plt.ylabel('Frequency')
    plt.show()

for name in models.keys():
    plot_error(results, name, test_loader, device, scaler)

7. 总结

以上代码提供了一个完整的框架,用于实现KAN结合Transformer、LSTM、BiGRU、GRU和TCN的时间序列预测模型。代码包括数据读取、预处理、模型构建、训练、评估和结果可视化等多个步骤。

<think>嗯,用户想了解时间序列预测的神经网络算法实现模型架构。首先,我需要回忆一下时间序列分析的基本概念常用的神经网络模型。时间序列数据是按时间顺序排列的数据点,比如股票价格、天气数据等。预测这类数据需要考虑时间依赖性,所以传统的方法可能不够,神经网络在这方面应该有很多应用。 首先想到的是循环神经网络(RNN),尤其是LSTMGRU,因为它们能处理序列数据的长期依赖问题。LSTM通过门控机制控制信息的流动,适合捕捉时间序列中的模式。GRU结构更简单,参数更少,可能训练更快。这些都是RNN的变种,适用于序列数据。 然后是Transformer模型,它在NLP领域很成功,因为自注意力机制可以捕捉长距离依赖。时间序列也有类似的长距离依赖问题,所以Transformer可能也适用。比如Informer模型就是专为时间序列设计的,改进了Transformer的计算效率。 还有TCN,时间卷积网络,使用膨胀卷积来扩大感受野,处理长期依赖。可能比RNN更高效,因为卷积可以并行计算。 另外,结合CNNRNN的混合模型,比如用CNN提取局部特征,再输入RNN处理时序关系。或者注意力机制RNN结合,增强重要时间步的关注。 在实现步骤方面,数据预处理是关键,包括归一化、滑动窗口构造样本。然后是模型构建,根据数据特点选择网络结构。训练时要选择合适的损失函数,如MSE,优化器如Adam。评估指标常用MAE、RMSE等。 可能需要考虑过拟合问题,加入Dropout或正则化。超参数调优也很重要,比如网络层数、学习率、窗口大小。 用户可能需要具体的代码示例,比如用PyTorch实现LSTM。给出一个简单的代码框架,包括定义模型、训练循环预测部分。 相关问题部分,需要覆盖模型比较、数据预处理、评估指标、优化技巧应用场景。这样用户能全面了解时间序列预测的各个方面。 需要检查是否所有数学公式都用了正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。例如,MSE公式要写成$\text{MSE} = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$。 最后确保回答结构清晰,分点说明模型架构、实现步骤、代码示例相关问题,引用必要的文献或资料,比如Informer模型的相关论文[^1]。</think>### 时间序列预测的神经网络算法实现模型架构 时间序列预测是机器学习深度学习的重要应用领域,其核心是通过历史数据建模未来趋势。以下从模型架构、实现方法、代码示例及关键问题展开说明。 --- #### 一、常用神经网络模型架构 1. **循环神经网络(RNN)及其变体** - **LSTM(长短期记忆网络)**:通过门控机制(输入门、遗忘门、输出门)控制信息流动,适合捕捉长期依赖关系[^1]。公式: $$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$ $$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$ $$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$ - **GRU(门控循环单元)**:简化版LSTM,仅含更新门重置门,计算效率更高[^2]。 2. **Transformer模型** 通过自注意力机制(Self-Attention)捕捉序列全局关系,例如: $$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$ 专用于时间序列的改进模型如**Informer**,通过稀疏注意力降低计算复杂度[^3]。 3. **时间卷积网络(TCN)** 使用膨胀卷积(Dilated Convolution)扩大感受野,并行计算效率优于RNN: $$y_t = \sum_{k=0}^{K-1} w_k \cdot x_{t - d \cdot k}$$ 其中$d$为膨胀系数。 4. **混合模型** - CNN+RNN:用CNN提取局部特征,RNN处理时序依赖。 - 注意力机制+RNN:增强对关键时间步的关注。 --- #### 二、实现步骤代码示例PyTorch) 1. **数据预处理** - 归一化:将数据缩放到$[0,1]$或$[-1,1]$区间。 - 滑动窗口构造样本:将时间序列分割为输入-输出对,例如用$t-7$至$t$时刻的数据预测$t+1$时刻。 2. **模型构建(以LSTM为例)** ```python import torch.nn as nn class LSTMModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super().__init__() self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): out, _ = self.lstm(x) # out形状: (batch_size, seq_len, hidden_dim) out = self.fc(out[:, -1, :]) # 取最后一个时间步的输出 return out ``` 3. **训练评估** - 损失函数:均方误差($\text{MSE} = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$)。 - 优化器:Adam或RMSprop。 - 评估指标:MAE、RMSE、MAPE。 --- #### 三、关键问题优化 1. **长期依赖问题** - 使用LSTM的遗忘门或TCN的膨胀卷积增强长期记忆能力[^2]。 - Transformer通过位置编码保留时序信息[^3]。 2. **过拟合控制** - 添加Dropout层或L2正则化。 - 早停法(Early Stopping)监控验证集损失。 3. **多变量多步预测** - 多变量输入:将外部特征(如温度、湿度)历史序列拼接。 - 多步预测:采用Seq2Seq结构或直接预测多个时间点。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackie_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值