【Python】pth模型转onnx模型的实践

本文介绍了如何将YOLOX-nano.pth模型转换为YOLOX-nano.onnx模型,详细阐述了转换过程、依赖库安装、模型验证、ONNXRuntime的使用以及遇到的报错及解决方法。转换过程中,需要修改输入维度,并使用Netron进行模型结构查看。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💚💚💚本文简单介绍YOLOX-nano.pth模型转换为YOLOX-nano.onnx模型。💚💚💚

.pt 文件不仅包含模型的参数,还包含模型的结构信息。可以不必重新定义模型结构即可直接开始训练或预测。.pth 文件仅保存模型的参数,而不包括模型的结构信息。由于不保存结构数据,.pth 文件通常较小,有助于提高文件读取和写入的速度。如果需要在不同的机器中迁移模型,使用.pt 文件会更方便

目录

1 模型下载

2 安装依赖库

<think>我们正在处理一个关于将PyTorch模型(.pth文件转换ONNX格式的问题。根据用户的问题,我们需要提供详细的步骤和代码示例。同时,我们需要参考站内引用中提供的信息,但要注意这些引用可能不是完全相关,需要从中提取有用的部分。 根据引用[1]和引用[2],我们可以总结出以下步骤: 1.加载PyTorch模型(.pth文件)。2.创建一个输入示例(dummy input)用于模型转换。3.使用torch.onnx.export函数将模型转换ONNX格式。4.可选:验证转换后的ONNX模型是否正确。此外,引用[2]还提供了使用onnxruntime加载ONNX模型并进行推理的示例代码,这可以作为转换后的验证步骤。引用[3]提到了一个具体的项目(handposex),其中使用resnet_18模型,并指定了输入尺寸(96x96),这提示我们在转换时需要注意输入尺寸。因此,我们的回答将包括以下步骤: 1.准备PyTorch模型(加载模型架构和权重)。 2.设置模型为评估模式。3.创建一个示例输入(根据模型的输入尺寸)。 4.使用torch.onnx.export进行转换。 5.验证导出的ONNX模型(可选)。同时,我们将生成相关问题。注意:用户要求使用中文回答,并且所有数学表达式和独立公式使用LaTeX格式(虽然本问题可能不涉及数学公式,但如果有则需遵守)。 现在,我们开始编写回答。</think>### PyTorch模型转换ONNX格式指南 将PyTorch的`.pth`模型文件转换ONNX格式需要以下步骤: #### 1. **准备转换环境** ```python import torch import torch.onnx ``` #### 2. **加载PyTorch模型** ```python # 实例化原始模型结构 model = YourModelClass() # 替换为你的模型类 # 加载预训练权重 state_dict = torch.load("your_model.pth", map_location=torch.device('cpu')) model.load_state_dict(state_dict) model.eval() # 设置为评估模式 ``` #### 3. **创建示例输入** ```python # 根据模型输入维度创建虚拟输入 dummy_input = torch.randn(1, 3, 224, 224) # 示例:(batch_size, channels, height, width) ``` #### 4. **执行ONNX转换** ```python torch.onnx.export( model, # PyTorch模型 dummy_input, # 示例输入 "model.onnx", # 输出ONNX文件名 export_params=True, # 导出模型权重 opset_version=12, # ONNX算子集版本 do_constant_folding=True,# 优化常量 input_names=['input'], # 输入节点名称 output_names=['output'], # 输出节点名称 dynamic_axes={ # 动态维度配置 'input': {0: 'batch_size'}, 'output': {0: 'batch_size'} } ) ``` #### 5. **验证ONNX模型** ```python import onnx # 检查模型有效性 onnx_model = onnx.load("model.onnx") onnx.checker.check_model(onnx_model) # 验证输出一致性 with torch.no_grad(): torch_out = model(dummy_input) import onnxruntime as ort ort_session = ort.InferenceSession("model.onnx") onnx_out = ort_session.run(None, {'input': dummy_input.numpy()}) # 比较输出差异 torch.testing.assert_close(torch_out, torch.tensor(onnx_out[0]), rtol=1e-03, atol=1e-05) ``` #### 关键注意事项: 1. **输入维度**:虚拟输入必须与实际推理尺寸一致 2. **算子支持**:确保使用PyTorch支持的ONNX算子集版本 3. **动态轴**:使用`dynamic_axes`参数支持可变批次大小 4. **模型验证**:必须验证转换前后输出的一致性[^1] > 转换成功率公式:$$P_{success} = \frac{N_{supported\_ops}}{N_{total\_ops}} \times 100\%$$ #### 常见错误处理: - **未实现算子**:添加自定义算子或使用替代实现 - **维度不匹配**:检查模型中的硬编码尺寸 - **版本冲突**:对齐PyTorch/ONNX/ONNXRuntime版本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值