Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

本文提出了一种多说话人的文本转语音(TTS)系统,能合成未在训练集中出现的说话人的声音。系统包括三个部分:说话者编码器网络、基于Tacotron2的序列到序列合成网络和WaveNet声码器。说话者编码器在网络训练后,可以从几秒的语音中生成嵌入向量,用于指导合成网络生成特定说话人的语音。这种方法允许模型在小数据集上完成对未见过的说话人的适应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文PDF版
Audio samples from “Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis”

Github

Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis

abstract

在这里插入图片描述
文中介绍了一种多说话人的语音合成系统(TTS),可以合成不在训练集合中的说话人声音,包括在train的时候没有见过的。该系统包含了三个部分。

  • a speaker encoder net: 在数千个说话者的带噪数据集上训练的,不需要文本数据,可以从几秒的语音中生成一个embedding vector;
  • 一个基于tactron2的seq2seq synthesis net : 在speaker embedding的基础上从文本生层梅尔谱;
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值