题目
Given a non-empty tree with root R, and with weight WiW_iWi assigned to each tree node TiT_iTi. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node LLL.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N≤1000<N≤1000<N≤100, the number of nodes in a tree, M(<N)M (<N)M(<N), the number of non-leaf nodes, and 0<S<2300<S<2^{30}0<S<230 , the given weight number. The next line contains N positive numbers where Wi(<1000)W_i (<1000)Wi(<1000) corresponds to the tree node TiT_iTi. Then MMMlines follow, each in the format:
ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1,A2,⋯,An}\{A1,A2,⋯,An\}{A1,A2,⋯,An} is said to be greater than sequence {B1,B2,⋯,Bm}\{B1 ,B2 ,⋯,Bm\}{B1,B2,⋯,Bm} if there exists 1≤k<min{n,m}1≤k<min\{n,m\}1≤k<min{n,m} such that Ai=Bi,i=1,⋯,kA_i=B_i, i=1,⋯,kAi=Bi,i=1,⋯,k, and Ak+1>Bk+1A_{k+1}>B_{k+1}Ak+1>Bk+1
.
Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2
解题思路
/*
** @Brief:No.1052 of PAT advanced level.
** @Author:Jason.Lee
** @Date:2018-12-21
** @Solution: https://blog.csdn.net/CV_Jason/article/details/85169580
*/
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
struct node{
int addr;
int data;
int next;
};
node nnn[100010];
int main(){
int N,index,start;
while(cin>>N){
cin>>start;
vector<node> list;
node input{-1,0,-1};
fill(nnn,nnn+100010,input);
for(int i=0;i<N;i++){
cin>>input.addr>>input.data>>input.next;
nnn[input.addr] = input;
}
index = start;
while(index!=-1){
if(nnn[index].addr == -1){
break;
}
list.push_back(nnn[index]);
index = nnn[index].next;
}
if(list.size()!=0){
sort(list.begin(),list.end(),[](node a,node b){return a.data<b.data;});
printf("%d %05d\n",list.size(),list[0].addr);
printf("%05d %d ",list[0].addr,list[0].data);
for(int i=1;i<list.size();i++){
printf("%05d\n%05d %d ",list[i].addr,list[i].addr,list[i].data);
}
printf("-1\n");
}else{
printf("0 -1\n");
}
}
return 0;
}