1053 Path of Equal Weight (30 分)

本文详细解析了PAT高级题1052的解题思路与算法实现,题目涉及树的遍历与路径查找,通过递归方法找出所有权重等于给定数值的路径,并按非递增顺序输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

Given a non-empty tree with root R, and with weight WiW_iWi assigned to each tree node TiT_iTi. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node LLL.

Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
在这里插入图片描述

Input Specification:
Each input file contains one test case. Each case starts with a line containing 0&lt;N≤1000&lt;N≤1000<N100, the number of nodes in a tree, M(&lt;N)M (&lt;N)M(<N), the number of non-leaf nodes, and 0&lt;S&lt;2300&lt;S&lt;2^{30}0<S<230​​ , the given weight number. The next line contains N positive numbers where Wi(&lt;1000)W_i (&lt;1000)Wi(<1000) corresponds to the tree node TiT_iTi. Then MMMlines follow, each in the format:

ID K ID[1] ID[2] … ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

Note: sequence {A1,A2,⋯,An}\{A1,A2,⋯,An\}{A1,A2,,An} is said to be greater than sequence {B1,B2,⋯,Bm}\{B1 ,B2 ,⋯,Bm\}{B1,B2,,Bm} if there exists 1≤k&lt;min{n,m}1≤k&lt;min\{n,m\}1k<min{n,m} such that Ai=Bi,i=1,⋯,kA_i=B_i, i=1,⋯,kAi=Bi,i=1,,k, and Ak+1&gt;Bk+1A_{k+1}&gt;B_{k+1}Ak+1>Bk+1
​​ .

Sample Input:

20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19

Sample Output:

10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

解题思路

     
/*
** @Brief:No.1052 of PAT advanced level.
** @Author:Jason.Lee
** @Date:2018-12-21
** @Solution: https://blog.csdn.net/CV_Jason/article/details/85169580
*/
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

struct node{
	int addr;
	int data;
	int next;
};

node nnn[100010];

int main(){
	int N,index,start;
	while(cin>>N){
		cin>>start;
		vector<node> list;
		node input{-1,0,-1};
		fill(nnn,nnn+100010,input);
		for(int i=0;i<N;i++){
			cin>>input.addr>>input.data>>input.next;
			nnn[input.addr] = input;
		}
		index = start;
		while(index!=-1){
			if(nnn[index].addr == -1){
				break;
			}
			list.push_back(nnn[index]);
			index = nnn[index].next;
		}
		if(list.size()!=0){
			sort(list.begin(),list.end(),[](node a,node b){return a.data<b.data;});
			printf("%d %05d\n",list.size(),list[0].addr);
			printf("%05d %d ",list[0].addr,list[0].data);
			for(int i=1;i<list.size();i++){
				printf("%05d\n%05d %d ",list[i].addr,list[i].addr,list[i].data);
			}
			printf("-1\n");
		}else{
			printf("0 -1\n");
		}
	}
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值