Acwing 107. 超快速排序(逆序对的数量)

这篇博客探讨了如何利用归并排序算法来高效地统计数组中的逆序对数量。博主指出冒泡排序会超时,并证明了逆序对数量即为排序过程中交换次数的下限。通过归并排序,每次比较都能减少至少一对逆序对,最终得出总逆序对数。提供的C++代码展示了具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述

分析

如果使用冒泡排序来统计需要交换的次数的话,那么是会超时的。

思考一下,如果数组不是有序的,那么肯定存在至少两个数使得:a[i] > a[i + 1]

那么,交换相邻两个数使得数组有序至少需要交换的次数为逆序对的数量

证明:
假设数组中有 k 对逆序对,假设 a[i] > a[i + 1] 我们交换swap(a[i],a[i+1])swap(a[i] , a[i + 1])swap(a[i],a[i+1])那么数组中的逆序对数量只会减少一对(对 a[i] 之前的逆序对和 a[i+1] 之后的逆序对的数量没有影响),那么至少需要 k 次就可以将数组变为有序。

并且每次操作都保证会交换一组相邻的逆序对,因为当数组不是有序的时候,必定存在一组相邻的逆序对。

代码使用归并排序求逆序对数量:

#include <iostream>

using namespace std;

const int N = 500010;

int n , a[N] , temp[N];
long long res = 0;

void merge_sort(int l , int r)
{
    if(l >= r) return;
    
    int mid = (l + r) / 2;
    merge_sort(l , mid) , merge_sort(mid + 1 , r);
    int i = l , j = mid + 1 , k = 0;
    while(i <= mid && j <= r)
    {
        if(a[i] <= a[j]) temp[k ++] = a[i ++];
        else 
        {
            temp[k ++] = a[j ++];
            res += mid - i + 1;
        }
    }
    while(i <= mid) temp[k ++] = a[i ++];
    while(j <= r) temp[k ++] = a[j ++];
    for(int i = l , j = 0; j < k; j ++ , i ++) a[i] = temp[j];
}

int main()
{
    while(cin >> n , n)
    {
        for(int i = 0; i < n; i ++) scanf("%d" , &a[i]);
        
        res = 0;
        merge_sort(0 , n - 1);
        cout << res << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

11来了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值